Аттестационная работа поверка и калибровка средств измерений. Калибровка средства измерений. Принципы организации Российской системы калибровки

Калибровка (градуировка) средств измерений

В данном разделе рассматриваются и определяются те метрологические характеристики СИ, которые необходимы для получения измеренного значения величины. Калибровка СИ связана с получением единицы величины от эталона и дальнейшего ее хранения для выполнения будущих измерений.

Единица измеряемой величины может быть сохранена отметками шкалы или параметрами калибровочной функции (КФ) - градуировочной характеристики (ГХ), связывающей показания СИ с измеряемой величиной.

Если калибровочная функция не несет информации о показателях точности ее построения, то она не может быть использована для представления результата измерения. С калибровочной функцией должна быть связана погрешность калибровки, представляемая в виде таблицы или функции.

Диаграмма калибровки - графическое выражение соотношения между показанием СИ и соответствующим эталонным значением величины с полосой погрешности. Она соответствует отношению "один-множество ", а ширина полосы для данного показания отражает инструментальную неопределенность .

Калибровочные функции

Значительная часть скважинной геофизической аппаратуры относится к индивидуально градуируемым СИ.

Градуировкой измерительного преобразователя называется совокупность операций, выполняемых с целью передачи ему единицы физической величины путем оцифровки шкалы прибора или установления параметров функциональной зависимости между измеряемым параметром и выходным сигналом измерительного преобразователя. Следует заметить, что в Законе № 102-ФЗ термин "градуировка" не упоминается. Эту операцию будем рассматривать как составную часть калибровки (см. рис. 13), в результате которой определяются действительные значения параметров индивидуальной градуировочной характеристики СИ.

Градуировочной характеристикой называется зависимость выходного сигнала х СИ от измеряемого параметра (измеряемой величины) В изм , то есть x=f(В изм ). Обычно при построении градуировочной характеристики определяют зависимость между эталонным значением измеряемого параметра и выходным сигналом СИ, вызванным воздействием эталона на датчик (зонд) аппаратуры

В большинстве случаев в геофизике применяется обратная градуировочная характеристика, представляющая собой зависимость измеряемого параметра от выходного сигнала аппаратуры, то есть В изм =F(х) . Такая характеристика, представленная формулой, очень удобна для непосредственного вычисления измеренного значения измеряемого параметра по показаниям (значению выходного сигнала) геофизической аппаратуры.

В международном словаре VIM3 градуировочной характеристике соответствует понятие "калибровочная функция".

Калибровочная функция может быть номинальной (одинаковой для всей совокупности однотипных измерительных преобразователей) или индивидуальной (различной для каждого экземпляра однотипной аппаратуры). Аппаратура электрического и акустического каротажа, инклинометры и каверномеры имеют номинальные КФ. Для аппаратуры интегрального гамма-каротажа, нейтронного каротажа, плотностного гамма-гамма-каротажа, для скважинных термометров, манометров и расходомеров обычно строится индивидуальная КФ.

При градуировке всегда оцениваются погрешности построенной функции преобразования, включающие погрешности применяемых эталонов и погрешности аппроксимации реальной экспериментальной функции преобразования какой-либо известной функцией.

КФ может быть линейной или нелинейной, функцией одной, двух и более переменных.

Если линейная КФ проходит через ноль (начало декартовых координат), то в документации указывается только один коэффициент преобразования. Если она не проходит через ноль, то указывают формулу Y=а+вх , описывающую функцию преобразования двумя коэффициентами а и в , х - выходной сигнал.

Если характеристика нелинейная, то чаще всего указывают функцию преобразования в виде полинома второй степени Y=а+вх+сх 2 (с тремя коэффициентами) и (или) график функции. Полином более высокой степени не используется, так как степень кривизны функции обычно не велика. Реже используется степенная и логарифмическая КФ.

При определении (вычислении) коэффициентов КФ как функции одной переменной составляется система уравнений, в каждом из которых неизвестными являются сами вычисляемые коэффициенты для каждой пары "измеряемый параметр - выходной сигнал".

Номинальную или индивидуальную КФ аппаратуры представляют в виде формулы, графика или таблицы. Но в любом случае в её основе лежит функциональная зависимость, связывающая измеряемую величину с выходным сигналом аппаратуры, а также с параметрами влияющих величин на основе экспериментальных данных.

Эти данные попарно представляют собой измеренные значения величины, воспроизводимые эталоном или измеренные эталонным прибором, и измеренные значения выходного сигнала градуируемой аппаратуры. Каждое из этих измеренных значений содержит систематическую погрешность, что обусловливает неидеальность процесса калибровки СИ. Это означает, что координаты каждой экспериментальной точки, принятой для построения КФ, являются случайными величинами. Поэтому принятая для аппаратуры КФ является частной реализацией совокупности случайных реализаций КФ, отличающихся от идеальной КФ этой аппаратуры.

Возможны два варианта расположения принятой КФ аппаратуры относительно экспериментальных точек:

  • 1) проходит строго через экспериментальные точки;
  • 2) проходит между экспериментальными точками, не совпадая ни с одной из них.

В первом случае количество пар экспериментальных данных равно числу неизвестных параметров (коэффициентов) функции, принятой для аппаратуры в качестве КФ.

Для второго варианта число пар экспериментальных данных больше числа неизвестных коэффициентов КФ. Соответственно число уравнений в системе уравнений, равное числу пар экспериментальных данных, должно быть больше числа неизвестных коэффициентов КФ. В этом случае система уравнений не имеет однозначного решения и решается одним из статистических методов - методом наименьших квадратов (МНК).

Рассмотрим эти два метода построения КФ для трех видов функций, наиболее часто встречающихся в геофизике - линейной, параболической и логарифмической.

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности.

Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности - мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

После регулировки нуля, т. е. устранения аддитивной погрешности, систематическая погрешность обращается в нуль на нижнем пределе измерения, а в диапазоне измерения принимает значения, являющиеся случайной функцией Д С (Х) измеряемой величины.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и, главным образом, мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерений понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т. е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки.

  • 1. Использование типовых шкал. Для подавляющего большинства рабочих и многих образцовых приборов используют типовые шкалы, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора. Если статическая характеристика линейна, то шкала оказывается равномерной. При регулировке параметрам элементов прибора экспериментально придают такие значения, при которых погрешность в точках регулировки становится равной нулю.
  • 2. Индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.

Индивидуальную градуировку проводят в следующем порядке.

На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких, наперед заданных или выбранных значений. На циферблат наносят отметки, соответствующие положениям указателя при этих значениях измеряемой величины, а расстояния между отметками делят на равные части.

При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке, она достигает значения, равного погрешности обратного хода.

3. Градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например через миллиметр или угловой градус. Градуировка шкалы состоит в определении с помощью образцовых мер или измерительных приборов значений измеряемой величины. В результате определяют зависимость числа делений шкалы, пройденных указателем, от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода, градуировку осуществляют раздельно при прямом и обратном ходе.

Калибровка средства измерений - cовокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средств измерений.

Калибровке могут подвергаться средства измерения, не входящие в сферу распространения государственного контроля и надзора (либо применяемые вне сферы ГМКиН), но при этом необходимо проконтролировать их метрологические характерстики, например при выпуске СИ из производства или ремонта, при ввозе по импорту, при эксплуатации, прокате и продаже.

Калибровку средств измерения выполняют калибровочные лаборатории или в соответствии с принятой в России терминологией «метрологические службы юридических лиц» с использованием эталонов, соподчиненных с государственными эталонами единиц величин. Средства калибровки (эталоны) подлежат обязательной поверке и при проведении калибровочных работ должны иметь действующие свидетельства о поверке.

Результаты калибровки позволяют определять:

  • действительные значения измеряемой величины;
  • поправки к показаниям средств измерений;
  • погрешность средств измерений.

Основное принципиальное отличие калибровки от поверки , заключается в том, что калибровка не относится к процедуре подтверждения соответствия. Подтверждением соответствия является только поверка, при калибровке определяются действительные значения метрологических характеристик и она скорее является исследовательской работой.

Как правило, ввиду отсутствия специальных методик, калибровка проводится по методикам поверки на калибруемые либо аналогичные им средства измерений. Однако калибровка может отличаться от поверки как в сторону упрощения, так и в сторону усложнения процедуры. При калибровке вполне правомерна постановка задачи определения характеристик погрешности средства измерений только в одной точке диапазона измерений и в условиях, отличающихся от нормальных.

Результаты калибровки средств измерений удостоверяются калибровочным знаком, наносимым на средства измерений или сертификатом о калибровке, а также записью в эксплуатационных документах.

В отличие от поверки, калибровка СИ является добровольной процедурой и может выполняться любой метрологической службой. Аккредитация на право калибровки так же является добровольной (не обязательной) процедурой и нужна в большей степени для признания результатов калибровки сторонними учреждениями и для поднятия имиджа предприятия.

Аккредитацию метрологических служб на право проведения калибровочных работ осуществляет Федеральная служба по аккредитации (Росаккредитация).

При рассмотрении споров в суде, арбитражном суде, органах государственного управления оформленные надлежащим образом результаты калибровки могут быть использованы в качестве доказательств.

Технически процедуры калибровки и поверки абсолютно тождественны и сводятся к определению погрешности средства измерения с использованием эталона, поэтому за рубежом вместо термина «verification» (поверка) чаще используется термин «legal calibration».

Для того чтобы приборы работали точно и качественно, им в обязательном порядке требуется периодическая поверка или калибровка. Рассмотрим, что подразумевают под собой данные операции и чем они отличаются друг от друга.

Определение

Поверка - процесс определения органами государственной метрологической службы (или любыми другими уполномоченными организациями) пригодности измерительных устройств к использованию, осуществляемый на основании экспериментально устанавливаемых метрологических характеристик, а также подтверждающий их соответствие существующим обязательным требованиям. Обязательной поверке подвергаются измерительные средства, подлежащие (по техническим требованиям) государственному метрологическому надзору и контролю.

Калибровка - это совокупность некоторых операций, определяющих соотношение между значениями величин, полученных при помощи данного измерительного прибора, и соответствующими значениям величин, установленных при помощи эталона. Калибровка проводится для того, чтобы определить действительные метрологические характеристики конкретного измерительного прибора. Обычно калибровке подвергаются измерительные устройства, не требующие обязательного государственного метрологического надзора и контроля.

Сравнение

Калибровка частично заменила ранее существовавшую метрологическую аттестацию и ведомственную поверку измерительных приборов. В отличие от поверки, осуществляемой органами ГМС, процесс калибровки может осуществляться любой метрологической службой, имеющей надлежащие условия для квалифицированного проведения данной операции.

Устройство для сравнительной калибровки ГУСК-ТТ

Калибровка - это добровольная операция, которую может выполнять метрологическая служба любого предприятия (если таковая имеется). Однако добровольность проведения калибровки не подразумевает под собой освобождения метрологической службы предприятия от соблюдения всех необходимых требований. Главное из которых - это обязательная «привязка» рабочего измерительного устройства к государственному (национальному) эталону. Таким образом, процесс калибровки можно охарактеризовать как составную часть государственной системы, обеспечивающей единство измерений. А с учетом того, что национальная система гарантирования единства измерений гармонизована с международными нормами и правилами измерений, калибровка включена в мировую систему, обеспечивающую единство измерений.

Выводы сайт

  1. Поверка - это проверка соответствия определенным стандартам. Калибровка - это приведение к определенным стандартам.
  2. Поверка - обязательная процедура. Калибровка - процедура добровольная и необязательная.
  3. Поверка осуществляется исключительно силами ГМС. Калибровка, кроме органов ГМС, может выполняться метрологической службой организации или предприятия, даже не имеющей соответствующей аккредитации.

— совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению средства измерений, не подлежащего государственному метрологическому контролю и надзору.

В проекте новой редакции Закона представлены существенно скорректированные определения терминов «калибровка средства измерений», «поверка средства измерений (эталона)».

Калибровка средства измерений (СИ) * — совокупность операций, устанавливающих в заданных условиях соотношение между значением величины, полученным с помощью данного средства измерений, и соответствующим значением величины, воспроизводимым эталоном, с целью определения действительных значений метрологических характеристик этого средства измерений.

Поверка средства измерений (эталона) — подтверждение соответствия средства измерений (эталона) установленным обязательным требованиям к выполнению измерений, основанное на результатах калибровки этого средства измерений (эталона). Из приведенных определений следует следующее.

Калибровка должна выполняться для любого СИ, поскольку СИ должно иметь установленные характеристики погрешности. Калибровка является необходимой технической процедурой как в сфере законодательной метрологии, так и вне ее.

Поверка средств измерений (поверка) - установление органом государственной метрологической службы (или другим официально уполномоченным органом, организацией) пригодности средства измерений к применению на основании экспериментально определяемых метрологических характеристик и подтверждения их соответствия установленным обязательным требованиям.

Поверка средств измерений - совокупность операций, выполняемых в целях подтверждения соответствия средств измерений метрологическим требованиям.

Поверке подвергают средства измерений, подлежащие государственному метрологическому контролю и надзору.

При поверке используют рабочий эталон. Поверку проводят в соответствии с обязательными требованиями, установленными нормативными документами по поверке. Поверку проводят специально обученные специалисты, аттестованные в качестве поверителей органами Государственной метрологической службы. Существуют следующие виды поверок.

Первичная - поверка, выполняемая при выпуске средства измерений из производства или после ремонта, а также при ввозе СИ из-за границы партиями, при продаже.

Периодическая - поверка СИ, находящихся в эксплуатации или на хранении, выполняемая через установленные межповерочные интервалы времени (обычно 1, 2 или 0,5 года).

Внеочередная - поверка СИ, проводимая до наступления срока его очередной периодической поверки. Необходимость внеочередной поверки может возникнуть из-за ухудшения метрологических свойств СИ или подозрения в этом, нарушения условий эксплуатации и др.

Выборочная - поверка группы СИ, отобранных из партии случайным образом, по результатам которой судят о пригодности к эксплуатации всей партии.

Инспекционная - поверка СИ, проводимая органом Государственной метрологической службы при проведении государственного надзора за состоянием и применением СИ. Поверка средств измерений (приборов) включает в себя следующие операции:

  1. Определение исправности прибора и наличия комплектующих. Для этого проводят внешний осмотр прибора, проверяют наличие паспорта, технической документации, комплектующих изделий, проверяют наличие маркировки и табличек (шильдиков) с указанием марки прибора, года изготовления, завода-изготовителя, заводского номера прибора и т.д. Проверяют отсутствие внешних повреждений, отсутствие подтёков масла и т.п. При наличии хотя бы одного из перечисленных недостатков прибор считается не прошедшим поверку.
  2. После предварительного осмотра прибор подвергают собственно поверке. Целью операции поверки является проверка соответствия прибора его классу точности.


Понравилась статья? Поделитесь ей
Наверх