Число которое можно записать как дробь. Основное свойство дроби. Правила. Основное свойство алгебраической дроби

Вы знаете, что, кроме натуральных чисел и нуля, существуют и другие числа − дробные .

Дробные числа возникают, когда один предмет (яблоко, арбуз, торт, буханку хлеба, лист бумаги) или единицу измерения (метр, час, килограмм, градус) делят на несколько равных частей.

Такие слова, как "полхлеба", "полбатона", "полкилограмма", "пол−литра", "четверть часа", "треть пути", "полтора метра", наверное, вы слышите каждый день.

Половина, четверть, треть, одна сотая, полтора − это примеры дробных чисел.

Рассмотрим пример.

На день рождения к вам в гости пришли 10 друзей. Праздничный торт был разделен на 10 равных частей (рис. 185 ). Тогда каждому гостю досталась одна десятая торта. Пишут:

Торта (читают: "одна десятая торта").

Такую "двухэтажную" запись используют для обозначения и других дробных чисел. Например: полкилограмма −

Кг (читают: "одна вторая килограмма"); четверть часа −

Ч (читают: "одна четвертая часа"); треть пути −

Пути (читают: "одна третья пути").

Если двое ваших гостей не любят сладкого, то сладкоежке достанется

Торта (читают: "три десятых торта"; рис. 186 ).

Записи вида

; ; ; ;

И т.п. называют обыкновенными дробями или короче − дробями .

Обыкновенные дроби записывают с помощью двух натуральных чисел и черты дроби .

Число, записанное над чертой, называют числителем дроби ; число, записанное под чертой, называют знаменатель дроби .

Знаменатель дроби показывает, на сколько равных частей разделили нечто целое, а числитель − сколько таких частей взяли .

Так на рисунке 187 равносторонний треугольник ABC разделили на 4 равные части − 4 равных треугольника. Три из них закрашены. Можно сказать, что закрашены фигура, площадь которой составляет

Площади треугольника ABC. Или говорят: закрашено

Треугольника ABC.

На рисунке 188 единичный отрезок OA координатного луча разделен на пять равных частей. Отрезок OB составляет

Единичного отрезка OA. Точка B изображает число

Число

Называют координатой точки B и пишут B (

). Поскольку отрезок OC составляет

Единичного отрезка OA, то координата точки C равна

Т.е. C (

Пример 1 . В саду растут 24 дерева, из них 7 − яблони. Какую часть всех деревьев составляют яблони?

Решение. Поскольку в саду растет 24 дерева, то одна яблоня составляет

Всех деревьев, а 7 яблонь −

Всех деревьев. .

Пример 2 . В саду растут 24 дерева, из них

Составляют вишни. Сколько вишневых деревьев растет в саду?

Решение. Знаменатель дроби

Показывает, что количество всех деревьев, растущих в саду, надо разделить на 8 равных частей. Поскольку в саду растут 24 дерева, то одна часть составляет 24 : 8 = 3 (дерева).

Числитель дроби3, то всего в саду растет 8 * 3 = 24 (дерева).

Ответ: 24 дерева.

Дробь охотничья - компонент для снаряжения патронов, давно уже ставший неотъемлемой частью жизни любого охотника. Именно с ее помощью зачастую осуществляется поражение дичи (косули, утки, глухаря, тетерева, фазана). В отличие от других компонентов патрона, производство и внешний вид этого боеприпаса фактически не изменились за 150 лет, прошедших с ее изобретения.

Виды дроби

Так что же такое дробь? Это маленькие свинцовые шарики (по размерам до 5 мм), используемые для охоты на множество животных (например, тетерева, глухаря, зайца, фазана). Однако, существует немало ее видов:

Материал

По материалу, из какого ее делают:

  • Свинцовая . Использование свинца весьма широко распространено, поскольку этот материал обладает всеми необходимыми качествами - тяжелый, дешевый, легкоплавкий. Ее легко делать своими руками в домашних условиях. Однако такие дробины слишком мягкие, к тому же, свинец токсичен и нарушает экологию. На Западе подобные разновидности дроби для охоты под давлением «зеленых» сегодня фактически уже не используется.
  • Стальная . Такие боеприпасы не деформируется, но быстрее теряют скорость и повреждают канал ствола.
  • Каленая . Та же дробь свинцовая, однако в нее домешивают олово, мышьяк, сурьму или какие-либо иные химические вещества.
  • Плакированная . Дробь свинцовая, покрытая никелем или мельхиором. На данный момент лучший по характеристикам и самый дорогой вариант на рынке.

Диаметр

Помните, что классификация по диаметру различается в зависимости от страны-производителя (ниже будет приведена российская таблица, а для знакомства с зарубежной классификацией рекомендуется обратиться к материалам, предоставляемым страной-производителем).

Нумерация дроби в российской классификации:

Размер
Дробь 0000 (4/0) размер 5 мм диаметр
000 (3/0) размер 4,75 мм диаметр
00 (2/0) размер 4,5 мм диаметр
0 размер 4,25 мм диаметр
1 размер 4 мм диаметр
2 размер 3,75 мм диаметр
3 размер 3,5 мм диаметр
4 размер 3,25 мм диаметр
5 размер 3 мм диаметр
6 размер 2,75 мм диаметр
7 размер 2,5 мм диаметр
8 размер 2,25 мм диаметр
9 размер 2 мм диаметр
10 размер 1,75 мм диаметр
11 размер 1,50 мм диаметр
12 размер 1,25 мм диаметр - самая мелкая дробь

Как вы заметили, миллиметраж этих боеприпасов снижается на четверть (0,25) миллиметра при понижении размера.

Подобная классификация слишком громоздка, поэтому можно рассортировать дробь по-другому:

  • Мелкая (10-6 номер);
  • Средняя (5-1 номер);
  • Крупная (0, 00,000, 000);

Дробь, картечь или пуля?

Многие начинающие охотники часто путают эти понятия, поэтому было бы неплохо сделать разницу более очевидной:

Маленькие отцентрованные шарики, форма которых близка к сфере. Отлично подходит для мелкой дичи.

Боеприпас размером более 5 мм (используется для охоты на более крупную дичь, например - косулю).

Цельнометаллический снаряд. Существует немало их разновидностей, однако они применяются, как и картечь, для охоты на косуль, кабанов и прочую крупную дичь.

Какую дробь для какой дичи использовать

Многие охотники спрашивают, кого (гуся, тетерева, фазана, зайца, глухаря) нужно бить и какими именно снарядами? О том, кого и чем надо бить, смотрите ниже:


При определении необходимого номера дроби помните, что в дичь должны попасть около 4-5 дробинок, поэтому, при стрельбе по мелким целям (гусь, утка, заяц, фазан, глухарь) картечью в лучшем случае попадет 1-2 дробинки, а значит, вы оставите подранка. С другой стороны, если дробовая осыпь будет все-таки удовлетворительной, то дичь (утка, глухарь, тетерев, фазан, заяц) будет просто разорвана и потеряет всю свою ценность.

С другой стороны, стреляя слишком мелкими снарядами, вы не пробьете оперение тетерева или гуся, а также шкуру косули, поэтому стрелять вы будете впустую.

Как сделать точность боя выше с охотничьей дробью?


Многие спрашивают, какой смысл делать боеприпасы собственными руками, если есть неплохие магазинные навески? Если сделать дробь в домашних условиях, это будет намного дешевле, пусть она и проигрывает по качеству заводской. К тому же многие старые охотники предпочитают делать собственные боеприпасы (в зависимости от того, на кого идет охота: на тетерева, утку, глухаря, зайца или гуся) для уверенности в качестве боя. Литьем обычно получают картечь или средние/крупные номера. Свинец берут либо кабельный, либо аккумуляторный (клеммы) и смешивают в пропорции 1/3.

Делать дробь в домашних условиях можно по-разному, однако все варианты в той или иной мере связаны с литьем. Приведем один из таких способов:

  1. Все начинается с плашки-дроболейки, которую необходимо сделать один раз, а впоследствии - пользоваться ею всю жизнь. Она выглядит как два куска металла с выемками, которые соединены шарниром с ручками. В обеих половинках делаем выемки под различные размеры дробинок (от картечи до 2 номера). Получившиеся полусферические выемки соединяются между собой канавками. Все канавки, собравшись вместе, выходят в желоб. Чем лучше выполнены канавки, тем выше будет качество картечи.
  2. Заливаем расплавленный дробовой свинец (по указанному выше рецепту) в желоб, а после литья дробинки просто отрезают друг от друга ножницами по металлу.

Готово! Перед тем, как стрелять ей кого-либо, ее рекомендуется прокатать на дробокатке, иначе пострадает кучность и дальность боя (об охоте на косулю, глухаря, утку, гуся или тетерева и речи быть не может).

Числитель и знаменатель дроби. Виды дробей. Продолжаем рассматривать дроби. Сначала небольшая оговорка – мы, рассматривая дроби и соответствующие примеры с ними, пока будем работать только с числовым её представлением. Бывают ещё и дробные буквенные выражения (с числами и без них). Впрочем, все «принципы» и правила также распространяются и на них, но о таких выражениях поговорим в будущем отдельно. Рекомендую посетить и изучать (вспоминать) тему дробей шаг за шагом.

Самое главное понять, запомнить и осознать, что ДРОБЬ – это ЧИСЛО!!!

Обыкновенная дробь – это число вида:

Число расположенное «сверху» (в данном случае m) называется числителем, число расположенное снизу (число n) называется знаменателем. У тех, кто только коснулся темы частенько возникает путаница – что как называется.

Вот вам приёмчик, как навсегда запомнить – где числитель, а где знаменатель. Данный приём связан со словесно-образной ассоциацией. Представьте себе банку с мутной водой. Известно, что по мере отстоя воды чистая вода остаётся сверху, а муть (грязь) оседает, запоминаем:

ЧИССС тая вода ВВЕРХУ (ЧИССС литель сверху)

ГряЗЗЗННН ая вода ВНИЗУ (ЗННН аменатель внизу)

Так что, как только возникнет необходимость вспомнить, где числитель, а где знаменатель, то сразу зрительно представили банку с отстоянной водой, в которой сверху ЧИСтая вода, а снизу гряЗНая вода. Есть и другие приёмы для запоминания, если они вам помогут, то хорошо.

Примеры обыкновенных дробей:

Что означает горизонтальная черточка между числами? Это не что иное, как знак деления. Получается, что дробь можно рассматривать как бы как пример с действием делением. Просто записано это действие вот в таком виде. То есть, верхнее число (числитель) делится на нижнее (знаменатель):

Кроме того, есть ещё форма записи – дробь может записываться и так (через косую черту):

1/9, 5/8, 45/64, 25/9, 15/13, 45/64 и так далее…

Можем записать вышеуказанные нами дроби так:

Результат деления, как известно это число.

Уяснили – ДРОБЬ ЭТО ЧИСЛО!!!

Как вы уже заметили, у обыкновенной дроби числитель может быть меньше знаменателя, может быть больше знаменателя и может быть равен ему. Тут присутствует множество важных моментов, которые понятны интуитивно, без каких-либо теоретических изысков. Например:

1. Дроби 1 и 3 можно записать как 0,5 и 0,01. Забежим немного вперёд – это десятичные дроби, о них поговорим чуть ниже.

2. Дроби 4 и 6 в результате дают целое число 45:9=5, 11:1 = 11.

3. Дробь 5 в результате даёт единицу 155:155 = 1.

Какие выводы напрашиваются сами собой? Следующие:

1. Числитель при делении на знаменатель может дать конечное число. Может и не получится, разделите столбиком 7 на 13 или 17 на 11 — никак! Делить можно бесконечно, но об этом также поговорим чуть ниже.

2. Дробь в результате может дать целое число. Следовательно и любое целое число мы можем представить в виде дроби, вернее бесконечного ряда дробей, посмотрите, все эти дроби равны 2:

Ещё! Любое целое число мы всегда можем записать в виде дроби – само это число в числителе, единица в знаменателе:

3. Единицу мы всегда можем представить в виде дроби с любым знаменателем:

*Указанные моменты крайне важны для работы с дробями при вычислениях и преобразованиях.

Виды дробей.

А теперь о теоретическом разделении обыкновенных дробей. Их разделяют на правильные и неправильные .

Дробь у которой числитель меньше знаменателя называется правильной. Примеры:

Дробь у которой числитель больше знаменателя или равен ему называется неправильной. Примеры:

Смешанная дробь (смешанное число).

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дробной его части. Примеры:

Смешанную дробь всегда можно представить в виде неправильной дроби и наоборот. Идём далее!

Десятичные дроби.

Выше мы их уже затронули, это примеры (1) и (3), теперь подробнее. Вот примеры десятичных дробей: 0,3 0,89 0,001 5,345.

Дробь, знаменатель которой есть степень числа 10, например 10, 100, 1000 и так далее, называется десятичной. Записать первые три указанные дроби в виде обыкновенных дробей несложно:

Четвёртая является смешанной дробью (смешанным числом):

Десятичная дробь имеет следующую форму записи — с начала целая часть, затем разделитель целой и дробной части точка или запятая и затем дробная часть, количество цифр дробной части строго определяется размерностью дробной части: если это десятые доли, дробная часть записывается одной цифрой; если тысячные - тремя; десятитысячные - четырьмя и т. д.

Данные дроби бывают конечными и бесконечными.

Примеры конечных десятичных дробей: 0,234; 0,87; 34,00005; 5,765.

Примеры бесконечных. Например число Пи это бесконечная десятичная дробь, ещё – 0,333333333333…... 0,16666666666…. и прочие. Также результат извлечения корня из чисел 3, 5, 7 и т.д. будет являться бесконечной дробью.

Дробная часть может быть цикличная (в ней присутствует цикл), два примера выше именно такие, ещё примеры:

0,123123123123…... цикл 123

0,781781781718…... цикл 781

0,0250102501…. цикл 02501

Записать их можно как 0,(123) 0,(781) 0,(02501).

Число Пи не является цикличной дробью как и, например, корень из трёх.

Ниже в примерах, будут звучать такие слова как «переворачиваем» дробь – это означает что числитель и знаменатель меняем местами. На самом деле у такой дроби есть название – обратная дробь. Примеры взаимно-обратных дробей:

Небольшой итог! Дроби бывают:

Обыкновенные (правильные и неправильные).

Десятичные (конечные и бесконечные).

Смешанные (смешанные числа).

На этом всё!

С уважением, Александр.

Часть единицы или несколько ее частей называют простой или обыкновенной дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей - числителем. Дробь записывается в виде:

В данном случае а - числитель, b - знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель больше знаменателя, то дробь больше 1, тогда дробь называется неправильной.

Если числитель и знаменатель дроби равны, то дробь равна.

1. Если числитель можно разделить на знаменатель, то эта дробь равна частному от деления:

В случае если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом, например:

Тогда 9 - неполное частное (целая часть смешанного числа),
1 - остаток (числитель дробной части),
5 - знаменатель.

Для того чтобы обратить смешанное число в дробь, необходимо умножить целую часть смешанного числа на знаменатель и прибавить числитель дробной части.

Полученный результат будет числителем обыкновенной дроби, а знаменатель останется прежним.

Действия с дробями

Расширение дроби. Значение дроби не меняется, если умножить ее числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля.
Например :

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, то есть привести к общему знаменателю. Рассмотрим, например, следующие дроби:

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того чтобы сложить дроби, необходимо сложить их числители, а для того чтобы вычесть дроби, надо вычесть их числители. Полученная сумма или разность будет числителем результата, а знаменатель останется прежним. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел сначала необходимо преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется к виду смешанного числа.

Умножение дробей . Для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

Деление дробей . Для того чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь.

Десятичная дробь - это результат деления единицы на десять, сто, тысячу и т.д. частей. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая - число сотых, третья - число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

Например:

Свойства десятичных дробей

Свойства:

  • Десятичная дробь не меняется, если справа добавить нули: 4,5 = 4,5000.
  • Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0,0560000 = 0,056.
  • Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции вправо: 4,5 45 (дробь возросла в 10 раз).
  • Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиции влево: 4,5 0,45 (дробь уменьшилась в 10 раз).

Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом: 0,321321321321…=0,(321)

Действия с десятичными дробями

Сложение и вычитание десятичных дробей выполняются так же, как и сложение и вычитание целых чисел, необходимо только записать соответствующие десятичные знаки один под другим.
Например:

Умножение десятичных дробей проводится в несколько этапов:

  • Перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку.
  • Применяется правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

Например :

Сумма чисел десятичных знаков в сомножителях равна: 2+1=3. Теперь необходимо с конца получившегося числа отсчитать 3 знака и поставить десятичную точку: 0,675.

Деление десятичных дробей. Деление десятичной дроби на целое число: если делимое меньше делителя, тогда нужно записать ноль в целой части частного и поставить после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединить к его целой части следующую цифру дробной части и опять сравнить полученную целую часть делимого с делителем. Если новое число опять меньше делителя, надо повторить операцию. Этот процесс повторяется до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

Деление одной десятичной дроби на другую: сначала переносятся десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом, и выполняются действия, описанные выше.

Для того чтобы обратить десятичную дробь в обыкновенную, необходимо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять k-ую степень десяти (k - количество десятичных знаков). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается.
Например:

Для того чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

Процент - это сотая часть единицы, например: 5% означает 0,05. Отношение - это частное от деления одного числа на другое. Пропорция - это равенство двух отношений.

Например:

Основное свойство пропорции: произведение крайних членов пропорции равно произведению ее средних членов, то есть 5х30=6х25. Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным (коэффициент пропорциональности).

Таким образом, выявлены следующие арифметические действия.
Например:

Множество рациональных чисел включает в себя положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее: число называется рациональным, если оно может быть представлено в виде обыкновенной несократимой дроби вида:, где a и b целые числа.

Для отрицательного числа абсолютная величина (модуль) - это положительное число, получаемое от перемены его знака с «-» на «+»; для положительного числа и нуля - само это число. Для обозначения модуля числа используются две прямые черты, внутри которых записывается это число, например: |–5|=5.

Свойства абсолютной величины

Пусть дан модуль числа , для которого справедливы свойства:

Одночлен - это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы: 3 х a х b. Коэффициентом чаще всего называют лишь числовой множитель. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Степень одночлена - это сумма показателей степеней всех его букв. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду: 3 х a х b + 6 х a = 3 х a х (b + 2). Эта операция называется приведением подобных членов или вынесением за скобки.

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Существуют следующие формулы сокращенного умножения:

Методы разложения на множители:

Алгебраическая дробь - это выражение вида , где A и B могут быть числом, одночленом, многочленом.

Если два выражения (числовые и буквенные) соединены знаком «=», то говорят, что они образуют равенство. Любое верное равенство, справедливое при всех допустимых числовых значениях входящих в него букв, называется тождеством.

Уравнение - это буквенное равенство, которое справедливо при определенных значениях входящих в него букв. Эти буквы называются неизвестными (переменными), а их значения, при которых данное уравнение обращается в тождество, - корнями уравнения.

Решить уравнение - значит найти все его корни. Два или несколько уравнений называются равносильными, если они имеют одни и те же корни.

  • ноль являлся корнем уравнения;
  • уравнение имело только конечное число корней.

Основные типы алгебраических уравнений:

У линейного уравнения ax + b = 0:

  • если a х 0, имеется единственный корень x = -b/a;
  • если a = 0, b ≠ 0, нет корней;
  • если a = 0, b = 0, корнем является любое действительное число.

Уравнение xn = a, n N:

  • если n - нечетное число, имеет при любом а действительный корень, равный a/n;
  • если n - четное число, то при a 0, то имеет два корня.

Основные тождественные преобразования: замена одного выражения другим, тождественно равным ему; перенос членов уравнения из одной стороны в другую с обратными знаками; умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля.

Линейным уравнением с одним неизвестным называется уравнение вида: ax+b=0, где a и b - известные числа, а x - неизвестная величина.

Системы двух линейных уравнений с двумя неизвестными имеют вид:

Где a, b, c, d, e, f - заданные числа; x, y - неизвестные.

Числа a, b, c, d - коэффициенты при неизвестных; e, f - свободные члены. Решение этой системы уравнений может быть найдено двумя основными методами: метод подстановки: из одного уравнения выражаем одно из неизвестных через коэффициенты и другое неизвестное, а затем подставляем во второе уравнение, решая последнее уравнение, находим сначала одно неизвестное, затем подставляем найденное значение в первое уравнение и находим второе неизвестное; метод сложения или вычитания одного уравнения из другого.

Операции с корнями:

Арифметическим корнем n-й степени из неотрицательного чис-ла a называется неотрицательное число, n-я степень которого рав-на a. Алгебраическим корнем n-й степени из данного числа называ-ется множество всех корней из этого числа.

Иррациональные числа в отличие от рациональных не могут быть представлены в виде обыкновенной несократимой дроби вида m/n, где m и n - целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: отношение длины диагонали квадрата к длине его стороны равно.

Квадратное уравнение есть алгебраическое уравнение второй степени ax2+bx+c=0, где a, b, c - заданные числовые или буквенные коэффициенты, x - неизвестное. Если разделить все члены этого уравнения на а, в результате получим x2+px+q=0 - приведенное уравнение p=b/a, q=c/a. Его корни находятся по формуле:

Если b2-4ac>0, тогда имеются два различных корня, b2- 4ac=0, тогда имеются два равных корня; b2-4ac Уравнения, содержащие модули

Основные типы уравнений, содержащие модули:
1) |f(x)| = |g(x)|;
2) |f(x)| = g(x);
3) f1(x)|g1(x)| + f2(x)|g2(x)| + … + fn(x)|gn(x)| =0, n N, где f(x), g(x), fk(x), gk(x) - заданные функции.



Понравилась статья? Поделитесь ей
Наверх