Электромагнитные волны и их излучение. Электромагнитное излучение — определение, разновидности, характеристики

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Дж. Максвелл в 1864 г. создал теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. В пространстве, где существует переменное магнитное поле, возбуждается переменное электрическое поле, и наоборот.

Электромагнитное поле – один из видов материи, характеризуемый наличием электрического и магнитного полей, связанных непрерывным взаимным превращением.

Электромагнитное поле распространяется в пространстве в виде электромагнитных волн. Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Эти волны излучаются колеблющимися заряженными частицами, которые при этом движутся в проводнике с ускорением. При движении заряда в проводнике создается переменное электрическое поле, которое порождает переменное магнитное поле, а последнее, в свою очередь, вызывает появление переменного электрического поля уже на большем расстоянии от заряда и так далее.

Электромагнитное поле, распространяющееся в пространстве с течением времени, называется электромагнитной волной .

Электромагнитные волны могут распространяться в вакууме или любом другом веществе. Электромагнитные волны в вакууме распространяются со скоростью света c=3·10 8 м/с . В веществе скорость электромагнитной волны меньше, чем в вакууме. Электромагнитная волна переносит энергию.

Электромагнитная волна обладает следующими основными свойствами: распространяется прямолинейно, она способна преломляться, отражаться, ей присущи явления дифракции, интерференции, поляризации. Всеми этими свойствами обладают световые волны , занимающие в шкале электромагнитных излучений соответствующий диапазон длин волн.

Мы знаем, что длина электромагнитных волн бывает самой различной. Посмотрев на шкалу электромагнитных волн с указанием длин волн и частот различных излучений, мы различим 7 диапазонов: низкочастотные излучения, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и гамма-излучение.


  • Низкочастотные волны . Источники излучения: токи высокой частоты, генератор переменного тока, электрические машины. Применяются для плавки и закалки металлов, изготовление постоянных магнитов, в электротехнической промышленности.
  • Радиоволны возникают в антеннах радио- и телевизионных станций, мобильных телефонах, радарах и т. д. Применяются в радиосвязи, телевидении, радиолокации.
  • Инфракрасные волны излучают все нагретые тела. Применение: плавка, резка, сварка тугоплавких металлов с помощью лазеров, фотографирование в тумане и темноте, сушка древесины, фруктов и ягод, приборы ночного видения.
  • Видимое излучение. Источники — Солнце, электрическая и люминесцентная лампа, электрическая дуга,лазер. Применяется: освещение, фотоэффект, голография.
  • Ультрафиолетовые излучение . Источники: Солнце, космос, газоразрядная (кварцевая) лампа, лазер. Оно способно убивать болезнетворные бактерии. Применяется для закаливания живых организмов.
  • Рентгеновское излучение .

Многие закономерности волновых процессов имеют универсальный характер и в равной мере справедливы для волн различной природы: механических волн в упругой среде, волн на поверхности воды, в натянутой струне и т. д. Не являются исключением и электромагнитные волны, представляющие собой процесс распространения колебаний электромагнитного поля. Но в отличие от других видов волн, распространение которых происходит в какой-то материальной среде, электромагнитные волны могут распространяться в пустоте: никакой материальной среды для распространения электрического и магнитного полей не требуется. Однако электромагнитные волны могут существовать не только в вакууме, но и в веществе.

Предсказание электромагнитных волн. Существование электромагнитных волн было теоретически предсказано Максвеллом в результате анализа предложенной им системы уравнений, описывающих электромагнитное поле. Максвелл показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью см/с, в которых векторы электрического и магнитного полей в каждый момент времени в каждой точке пространства перпендикулярны друг другу и перпендикулярны направлению распространения волн.

Экспериментально электромагнитные волны были открыты и изучены Герцем только спустя 10 лет после смерти Максвелла.

Открытый вибратор. Чтобы понять, каким образом можно получить электромагнитные волны на опыте, рассмотрим «открытый» колебательный контур, у которого обкладки конденсатора раздвинуты (рис. 176) и поэтому электрическое поле занимает большую область пространства. При увеличении расстояния между обкладками емкость С конденсатора убывает и в соответствии с формулой Томсона возрастает частота собственных колебаний. Если еще и катушку индуктивности заменить отрезком провода, то уменьшится индуктивность а частота собственных колебаний возрастет еще больше. При этом не только электрическое, но и магнитное поле, которое раньше было заключено внутри катушки, теперь займет большую область пространства, охватывающую этот провод.

Увеличение частоты колебаний в контуре, как и увеличение его линейных размеров, приводит к тому, что период собственных

колебаний становится сравнимым со временем распространения электромагнитного поля вдоль всего контура. Это означает, что процессы собственных электромагнитных колебаний в таком открытом контуре уже нельзя считать квазистационарными.

Рис. 176. Переход от колебательного контура к открытому вибратору

Сила тока в разных его местах в один и тот же момент времени разная: на концах контура она всегда равна нулю, а в середине (там, где прежде была катушка) она осциллирует с максимальной амплитудой.

В предельном случае, когда колебательный контур превратился просто в отрезок прямого провода, распределение силы тока вдоль контура в некоторый момент времени показано на рис. 177а. В тот момент, когда сила тока в таком вибраторе максимальна, охватывающее его магнитное поле также достигает максимума, а электрическое поле вблизи вибратора отсутствует. Через четверть периода обращается в нуль сила тока, а вместе с ней и магнитное поле вблизи вибратора; электрические заряды сосредоточиваются вблизи концов вибратора, а их распределение имеет вид, показанный на рис. 1776. Электрическое поле вблизи вибратора в этот момент максимально.

Рис. 177. Распределение вдоль открытого вибратора силы тока в момент, когда она максимальна (а), и распределение зарядов спустя четверть периода (б)

Эти колебания заряда и тока, т. е. электромагнитные колебания в открытом вибраторе, вполне аналогичны механическим колебаниям, которые могут происходить в пружине осциллятора, если убрать присоединенное к ней массивное тело. В этом случае придется учитывать массу отдельных частей пружины и рассматривать ее как распределенную систему, у которой каждый элемент обладает как упругими, так и инертными свойствами. В случае открытого электромагнитного вибратора каждый его элемент также одновременно обладает и индуктивностью, и емкостью.

Электрическое и магнитное поля вибратора. Неквазистационарный характер колебаний в открытом вибраторе приводит к тому, что создаваемые отдельными его участками поля на некотором расстоянии от вибратора уже не компенсируют друг друга, как это имеет место для «закрытого» колебательного контура с сосредоточенными параметрами, где колебания квазистационарны, электрическое поле целиком сосредоточено внутри конденсатора, а магнитное - внутри катушки. Из-за такого пространственного разделения электрического и магнитного полей они непосредственно не связаны друг с другом: их взаимное превращение обусловлено только током - переносом заряда по контуру.

У открытого вибратора, где электрическое и магнитное поля перекрываются в пространстве, происходит их взаимное влияние: изменяющееся магнитное поле порождает вихревое электрическое поле, а изменяющееся электрическое поле порождает магнитное поле. В результате оказывается возможным существование таких «самоподдерживающихся» и распространяющихся в свободном пространстве полей на большом расстоянии от вибратора. Это и есть излучаемые вибратором электромагнитные волны.

Опыты Герца. Вибратор, с помощью которого Г. Герцем в 1888 г. впервые были экспериментально получены электромагнитные волны, представлял собой прямолинейный проводник с небольшим воздушным промежутком посредине (рис. 178а). Благодаря такому промежутку можно было сообщить двум половинам вибратора значительные заряды. Когда разность потенциалов достигала определенного предельного значения, в воздушном зазоре возникал пробой (проскакивала искра) и электрические заряды через ионизированный воздух могли перетекать с одной половины вибратора на другую. Б открытом контуре возникали электромагнитные колебания. Чтобы быстропеременные токи существовали только в вибраторе и не замыкались через источник питания, между вибратором и источником включались дроссели (см. рис. 178а).

Рис. 178. Вибратор Герца

Высокочастотные колебания в вибраторе существуют, пока искра замыкает промежуток между его половинами. Затухание таких колебаний в вибраторе происходит в основном не за счет джоулевых потерь на сопротивлении (как в закрытом колебательном контуре), а за счет излучения электромагнитных волн.

Для обнаружения электромагнитных волн Герц применял второй (приемный) вибратор (рис. 1786). Под действием переменного электрического поля приходящей от излучателя волны электроны в приемном вибраторе совершают вынужденные колебания, т. е. в вибраторе возбуждается быстропеременный ток. Если размеры приемного вибратора такие же, как и у излучающего, то частоты собственных электромагнитных колебаний в них совпадают и вынужденные колебания в приемном вибраторе достигают заметной величины вследствие резонанса. Эти колебания Герц обнаруживал по проскакиванию искры в микроскопическом зазоре в середине приемного вибратора или по свечению миниатюрной газоразрядной трубки Г, включенной между половинами вибратора.

Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства - поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света.

Совпадение скорости электромагнитных волн с измеренной задолго до их открытия скоростью света послужило отправным пунктом для отождествления света с электромагнитными волнами и создания электромагнитной теории света.

Электромагнитная волна существует без источников полей в том смысле, что после ее излучения электромагнитное поле волны не связано с источником. Этим электромагнитная волна отличается от статических электрического и магнитного полей, которые не существуют в отрыве от источника.

Механизм излучения электромагнитных волн. Излучение электромагнитных волн происходит при ускоренном движении электрических зарядов. Понять, каким образом поперечное электрическое поле волны возникает из радиального кулоновского поля точечного заряда, можно с помощью следующего простого рассуждения, предложенного Дж. Томсоном.

Рис. 179. Поле неподвижного точечного заряда

Рассмотрим электрическое поле, создаваемое точечным зарядом Если заряд покоится, то его электростатическое поле изображается радиальными силовыми линиями, выходящими из заряда (рис. 179). Пусть в момент времени заряд под действием какой-то внешней силы начинает двигаться с ускорением а, а спустя некоторое время действие этой силы прекращается, так что дальше заряд движется равномерно со скоростью График скорости движения заряда показан на рис. 180.

Представим себе картину линий электрического поля, создаваемого этим зарядом, спустя большой промежуток времени Поскольку электрическое поле распространяется со скоростью света с,

то до точек, лежащих за пределами сферы радиуса изменение электрического поля, вызванное движением заряда, дойти не могло: за пределами этой сферы поле такое же, каким оно было при неподвижном заряде (рис. 181). Напряженность этого поля (в гауссовой системе единиц) равна

Все изменение электрического поля, вызванное ускоренным движением заряда в течение времени в момент времени находится внутри тонкого шарового слоя толщины наружный радиус которого равен а внутренний - Это показано на рис. 181. Внутри сферы радиуса электрическое поле - это поле равномерно движущегося заряда.

Рис. 180. График скорости заряда

Рис. 181. Линии напряженности электрического поля заряда, движущегося согласно графику на рис. 180

Рис. 182. К выводу формулы для напряженности поля излучения ускоренно движущегося заряда

Если скорость заряда много меньше скорости света с, то это поле в момент времени совпадает с полем неподвижного точечного заряда находящегося на расстоянии от начала (рис. 181): поле медленно движущегося с постоянной скоростью заряда перемещается вместе с ним, а пройденное зарядом за время расстояние, как видно из рис. 180, можно считать равным если г»т.

Картину электрического поля внутри шарового слоя легко найти, учитывая непрерывность силовых линий. Для этого нужно соединить соответствующие радиальные силовые линии (рис. 181). Вызванный ускоренным движением заряда излом силовых линий «убегает» от заряда со скоростью с. Излом на силовых линиях между

сферами это и есть интересующее нас поле излучения, распространяющееся со скоростью с.

Чтобы найти поле излучения, рассмотрим одну из линий напряженности, составляющую некоторый угол с направлением движения заряда (рис. 182). Разложим вектор напряженности электрического поля в изломе Е на две составляющие: радиальную и поперечную Радиальная составляющая - это напряженность электростатического поля, создаваемого зарядом на расстоянии от него:

Поперечная составляющая - это напряженность электрического поля в волне, излученной зарядом при ускоренном движении. Так как эта волна бежит по радиусу, то вектор перпендикулярен направлению распространения волны. Из рис. 182 видно, что

Подставляя сюда из (2), находим

Учитывая, что а отношение есть ускорение а, с которым двигался заряд в течение промежутка времени от 0 до перепишем это выражение в виде

Прежде всего обратим внимание на то, что напряженность электрического поля волны убывает обратно пропорционально расстоянию от центра, в отличие от напряженности электростатического поля которая пропорциональна Такой зависимости от расстояния и следовало ожидать, если принять во внимание закон сохранения энергии. Так как при распространении волны в пустоте поглощения энергии не происходит, то количество энергии, прошедшее через сферу любого радиуса, одинаково. Поскольку площадь поверхности сферы пропорциональна квадрату ее радиуса, то поток энергии через единицу ее поверхности должен быть обратно пропорционален квадрату радиуса. Учитывая, что плотность энергии электрического поля волны равна приходим к выводу, что

Далее отметим, что напряженность поля волны в формуле (4) в момент времени зависит от ускорения заряда а в момент времени волна, излученная в момент достигает точки, находящейся на расстоянии спустя время, равное

Излучение осциллирующего заряда. Предположим теперь, что заряд все время движется вдоль прямой с некоторым переменным ускорением вблизи начала координат, например совершает гармонические колебания. Тоща он будет излучать электромагнитные волны непрерывно. Напряженность электрического поля волны в точке, находящейся на расстоянии от начала координат, по-прежнему определяется формулой (4), причем поле в момент времени зависит от ускорения заряда а в более ранний момент

Пусть движение заряда представляет собой гармоническое колебание вблизи начала координат с некоторой амплитудой А и частотой со:

Ускорение заряда при таком движении дается выражением

Подставляя ускорение заряда в формулу (5), получаем

Изменение электрического поля в любой точке при прохождении такой волны представляет собой гармоническое колебание с частотой , т. е. осциллирующий заряд излучает монохроматическую волну. Разумеется, формула (8) справедлива на расстояниях больших по сравнению с амплитудой колебаний заряда А.

Энергия электромагнитной волны. Плотность энергии электрического поля монохроматической волны, излучаемой зарядом, можно найти с помощью формулы (8):

Плотность энергии пропорциональна квадрату амплитуды колебаний заряда и четвертой степени частоты.

Любое колебание связано с периодическими переходами энергии из одного вида в другой и обратно. Например, колебания механического осциллятора сопровождаются взаимными превращениями кинетической энергии и потенциальной энергии упругой деформации. При изучении электромагнитных колебаний в контуре мы видели, что аналогом потенциальной энергии механического осциллятора является энергия электрического поля в конденсаторе, а аналогом кинетической энергии - энергия магнитного поля катушки. Эта аналогия справедлива не только для локализованных колебаний, но и для волновых процессов.

В монохроматической волне, бегущей в упругой среде, плотности кинетической и потенциальной энергий в каждой точке совершают гармоническое колебание с удвоенной частотой, причем так, что их значения совпадают в любой момент времени. Так же и в бегущей монохроматической электромагнитной волне: плотности энергии электрического и магнитного полей, совершая гармоническое колебание с частотой равны друг другу в каждой точке в любой момент времени.

Плотность энергии магнитного поля выражается через индукцию В следующим образом:

Приравнивая плотности энергии электрического и магнитного полей в бегущей электромагнитной волне, убеждаемся, что индукция магнитного поля в такой волне зависит от координат и времени точно так же, как напряженность электрического поля. Другими словами, в бегущей волне индукция магнитного поля и напряженность электрического поля равны друг другу в любой точке в любой момент времени (в гауссовой системе единиц):

Поток энергии электромагнитной волны. Полная плотность энергии электромагнитного поля в бегущей волне вдвое больше плотности энергии электрического поля (9). Плотность потока энергии у, переносимой волной, равна произведению плотности энергии на скорость распространения волны . С помощью формулы (9) можно увидеть, что поток энергии через любую поверхность осциллирует с частотой Для нахождения среднего значения плотности потока энергии необходимо усреднить по времени выражение (9). Так как среднее значение равно 1/2, то для получаем

Рис. 183. Угловое распределение энергии» излучаемой осциллирующим зарядом

Плотность потока энергии в волне зависит от направления: в том направлении, по которому происходят колебания заряда, энергия вовсе не излучается Наибольшее количество энергии излучается в плоскости, перпендикулярной этому направлению Угловое распределение излучаемой осциллирующим зарядом энергии показано на рис. 183. Заряд совершает колебания вдоль оси Из начала координат проводятся отрезки, длина которых пропорциональна излучаемой в данном

направлении энергии, т. е. На диаграмме показана линия, соединяющая концы этих отрезков.

Распределение энергии по направлениям в пространстве характеризуется поверхностью, которая получается вращением диаграммы вокруг оси

Поляризация электромагнитных волн. Волна, порождаемая вибратором при гармонических колебаниях, называется монохроматической. Монохроматическая волна характеризуется определенной частотой со и длиной волны X. Длина волны и частота связаны через скорость распространения волны с:

Электромагнитная волна в вакууме является поперечной: вектор напряженности электромагнитного поля волны, как это видно из приведенных выше рассуждений, перпендикулярен направлению распространения волны. Проведем через точку наблюдения Р на рис. 184 сферу с центром в начале координат, около которого вдоль оси совершает колебания излучающий заряд. Проведем на ней параллели и меридианы. Тогда вектор Е поля волны будет направлен по касательной к меридиану, а вектор В перпендикулярен вектору Е и направлен по касательной к параллели.

Чтобы убедиться в этом, рассмотрим подробнее взаимосвязь электрического и магнитного полей в бегущей волне. Эти поля после излучения волны уже не связаны с источником. При изменении электрического поля волны возникает магнитное поле, силовые линии которого, как мы видели при изучении тока смещения, перпендикулярны силовым линиям электрического поля. Это переменное магнитное поле, изменяясь, в свою очередь приводит к появлению вихревого электрического поля, которое перпендикулярно породившему его магнитному полю. Таким образом, при распространении волны электрическое и магнитное поля поддерживают друг друга, оставаясь все время взаимно перпендикулярными. Так как в бегущей волне изменение электрического и магнитного полей происходит в фазе друг с другом, то мгновенный «портрет» волны (векторы Е и В в разных точках линии вдоль направления распространения) имеет вид, показанный на рис. 185. Такая волна называется линейно поляризованной. Совершающий гармоническое колебание заряд излучает по всем направлениям линейно поляризованные волны. В бегущей по любому направлению линейно поляризованной волне вектор Е все время находится в одной плоскости.

Так как в линейном электромагнитном вибраторе заряды совершают именно такое осциллирующее движение, то излучаемая вибратором электромагнитная волна поляризована линейно. В этом легко убедиться на опыте, изменяя ориентацию приемного вибратора относительно излучающего.

Рис. 185. Электрическое и магнитное поля в бегущей линейно поляризованной волне

Сигнал имеет наибольшую величину, когда приемный вибратор параллелен излучающему (см. рис. 178). Если приемный вибратор повернуть перпендикулярно излучающему, то сигнал пропадает. Электрические колебания в приемном вибраторе могут появиться только благодаря составляющей электрического поля волны, направленной вдоль вибратора. Поэтому такой опыт свидетельствует о том, что электрическое поле в волне параллельно излучающему вибратору.

Возможны и другие виды поляризации поперечных электромагнитных волн. Если, например, вектор Е в некоторой точке при прохождении волны равномерно вращается вокруг направления распространения, оставаясь неизменным по модулю, то волна называется циркулярно поляризованной или поляризованной по кругу. Мгновенный «портрет» электрического поля такой электромагнитной волны показан на рис. 186.

Рис. 186. Электрическое поле в бегущей циркулярно поляризованной волне

Волну круговой поляризации можно получить при сложении двух распространяющихся в одном направлении линейно поляризованных волн одинаковой частоты и амплитуды, векторы электрического поля в которых взаимно перпендикулярны. В каждой из волн вектор электрического поля в каждой точке совершает гармоническое колебание. Чтобы при сложении таких взаимно перпендикулярных колебаний получилось вращение результирующего вектора, необходим сдвиг фаз на Другими словами, складываемые линейно поляризованные волны должны быть сдвинуты на четверть длины волны одна относительно другой.

Импульс волны и давление света. Наряду с энергией электромагнитная волна обладает и импульсом. Если волна поглощается, то ее импульс передается тому объекту, который ее поглощает. Отсюда следует, что при поглощении электромагнитная волна оказывает давление на преграду. Объяснить происхождение давления волны и найти величину этого давления можно следующим образом.

Направлены по одной прямой. Тогда поглощаемая зарядом мощность Р равна

Будем считать, что вся энергия падающей волны поглощается преградой. Так как на единицу площади поверхности преграды в единицу времени волна приносит энергию то оказываемое волной при нормальном падении давление равно плотности энергии волны Сила давления поглощаемой электромагнитной волны сообщает преграде в единицу времени импульс, равный согласно формуле (15) поглощенной энергии, деленной на скорость света с. А это означает, что поглощенная электромагнитная волна обладала импульсом, который равен энергии, деленной на скорость света.

Впервые давление электромагнитных волн экспериментально было обнаружено П. Н. Лебедевым в 1900 г. в исключительно тонких опытах.

Чем отличаются квазистационарные электромагнитные колебания в закрытом колебательном контуре от высокочастотных колебаний в открытом вибраторе? Приведите механическую аналогию.

Поясните, почему при электромагнитных квазистационарных колебаниях в закрытом контуре не происходит излучение электромагнитных волн. Почему излучение происходит при электромагнитных колебаниях в открытом вибраторе?

Опишите и объясните опыты Герца по возбуждению и обнаружению электромагнитных волн. Какую роль играет искровой промежуток в передающем и приемном вибраторах?

Поясните, каким образом при ускоренном движении электрического заряда продольное электростатическое поле превращается в поперечное электрическое поле излучаемой им электромагнитной волны.

Исходя из энергетических соображений, покажите, что напряженность электрического поля сферической волны, излучаемой вибратором, убывает как 1 1г (в отличие от для электростатического поля).

Что такое монохроматическая электромагнитная волна? Что такое длина волны? Как она связана с частотой? В чем заключается свойство поперечности электромагнитных волн?

Что называется поляризацией электромагнитной волны? Какие виды поляризации вам известны?

Какие доводы вы можете привести для обоснования того, что электромагнитная волна обладает импульсом?

Объясните роль силы Лоренца в возникновении силы давления электромагнитной волны на преграду.

Мало кто знает, что излучение электромагнитной природы пронизывает всю Вселенную. Электромагнитные волны возникают при его распространении в пространстве. В зависимости от частоты колебания волн происходит условное их разделение на видимый свет, радиочастотный спектр, инфракрасные диапазоны и пр. Практическое существование электромагнитных волн было доказано опытным путем в 1880 году немецким ученым Г. Герцем (кстати, единица измерения частоты названа в его честь).

Из курса физики известно, что представляет собой особый вид материи. Несмотря на то, что зрением можно увидеть лишь небольшую его часть, его влияние на материальный мир огромно. Электромагнитные волны являются последовательным распространением в пространстве взаимодействующих векторов напряженности магнитного и электрического полей. Впрочем, слово «распространение» в данном случае не совсем корректно: речь идет, скорее, о волнообразном возмущении пространства. Причиной, генерирующей электромагнитные волны, является появление в пространстве изменяющегося с течением времени электрического поля. А, как известно, существует прямая связь между электрическими и магнитными полями. Достаточно вспомнить правило, согласно которому вокруг любого проводника с током присутствует магнитное поле. Частица, на которую действуют электромагнитные волны, начинает колебаться, а раз есть движение, значит, существует излучение энергии. Электрическое поле со передается соседней частице, находящейся в покое, в результате вновь генерируется поле электрической природы. А так как поля взаимосвязаны, следом появляется магнитное. Процесс распространяется лавинообразно. При этом реального движения нет, а есть колебания частиц.

О возможности практического использования такого физики задумывались уже давно. В современном мире энергия электромагнитных волн столь широко применяется, что многие этого даже не замечают, принимая это как должное. Яркий пример - радиоволны, без которых была бы невозможна работа телевизоров и мобильных телефонов.

Процесс происходит следующим образом: на металлический проводник особой формы (антенну) постоянно передается модулированный Благодаря свойствам электрического тока вокруг проводника возникает электрическое, а следом и магнитное поле, в результате чего осуществляется излучение электромагнитных волн. Так как модулируется, они несут определенный порядок, закодированную информацию. Чтобы уловить нужные частоты, у адресата устанавливается приемная антенна специальной конструкции. Она позволяет отобрать из общего электромагнитного фона нужные частоты. Попав на металлический приемник, волны частично преобразовываются в электрический ток исходной модуляции. Далее они поступают на усиливающий блок и управляют работой устройства (передвигают диффузор динамика, поворачивают электроды в экранах телевизоров).

Ток, полученный из электромагнитных волн, можно легко увидеть. Для этого достаточно оголенной жилой кабеля, идущего от антенны к приемнику, коснуться общей массы (батареи отопления, В этот момент между массой и жилой проскакивает искра - это и есть проявление генерированного антенной тока. Его значение тем больше, чем ближе и мощнее передатчик. Также существенное влияние оказывает конфигурация антенны.

Еще одно проявление электромагнитных волн, с которым многие ежедневно сталкиваются в быту - это использование микроволновой печи. Вращающиеся линии напряженности поля пересекают предмет и передают часть своей энергии, нагревая его.

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.



Понравилась статья? Поделитесь ей
Наверх