Как располагаются прямая и окружность. Урок "взаимное расположение прямой и окружности"


Составила учитель математики

МБОУ СШ №18 г. Красноярск

Андреева Инга Викторовна

Взаимное расположение прямой и окружности

О R – радиус

С D – диаметр

AB - хорда


  • Окружность с центром в точке О радиуса r
  • Прямая, которая не проходит через центр О
  • Расстояние от центра окружности до прямой обозначим буквой s

Возможны три случая:

  • 1) s
  • меньше радиуса окружности, то прямая и окружность имеют две общие точки .

Прямая АВ называется секущей по отношению к окружности.


Возможны три случая:

  • 2 ) s = r
  • Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку .

s = r


r Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек. sr r O" width="640"

Возможны три случая:

  • 3 ) sr
  • Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек .

Касательная к окружности

Определение: П рямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

s = r


  • прямая – секущая
  • прямая – секущая
  • общих точек нет
  • прямая – секущая
  • прямая - касательная
  • r = 15 см, s = 11 см
  • r = 6 см, s = 5 ,2 см
  • r = 3,2 м, s = 4 ,7 м
  • r = 7 см, s = 0,5 дм
  • r = 4 см, s = 4 0 мм

Решите № 633.

  • OABC- квадрат
  • AB = 6 см
  • Окружность с центром O радиуса 5 см

секущие из прямых OA , AB , BC , АС


Свойство касательной: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

m – касательная к окружности с центром О

М – точка касания

OM - радиус


Признак касательной: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна радиусу, то она является к асательной.

окружность с центром О

радиуса OM

m – прямая, которая проходит через точку М

m – касательная


Свойство касательных, проходящих через одну точку:

Отрезки касательных к

окружности, проведенные

из одной точки, равны и

составляют равные углы

с прямой, проходящей через

эту точку и центр окружности.

▼ По свойству касательной

∆ АВО, ∆ АСО–прямоугольные

∆ АВО= ∆ АСО–по гипотенузе и катету:

ОА – общая,

Взаимное расположение прямой и окружности Выясним, сколько общих точек могут иметь прямая и окружность в зависимости от их взаимного расположения. Ясно, что если прямая проходит через центр окружности, то она пересекает окружность в двух концах диаметра, лежащего на. этой примой.

Пусть прямая р не проходит через центр О окружности радиуса r. Проведем перпендикуляр ОН к прямой р и обозначим буквой d длину этого перпендикуляра, т. е, расстояние от центра данной окружности до прямой (рис. 1). Исследуем взаимное расположение прямой и окружности в зависимости от соотношения между d и r. Возможны три случая.

1) dр от точки Н отложим два отрезка НА и НВ, длины, которых равны (рис. 1)По теореме Пифагора ОА=,

0 B= Следовательно, точки А и В лежат на окружности и, значит, являются общими точками прямой р и данной окружности.

Докажем, что прямая р и данная окружность не имеют других общих точек. Предположим, что они имеют еще одну общую точку С. Тогда медиана-OD равнобедренного треугольника ОАС . проведенная к основанию АС, является высотой этого треугольника, поэтому О D p . Отрезки OD и ОН не совпадают

так как середина D отрезка АС не впадает с точкой Н - серединой отрезка, AB. Мы получили, что из точки О проведены два перпендикуляра: ОН и OD - к прямой р, что невозможно. Итак если расстояние от центра окружности до прямой меньше радиуса окружности(d < р), то прямая и окружность име ют две общие точки. В этом случае прямая называется секущей по отношению к окружности.

2) d= r. В этом случае ОН= r, т. е. точка Н лежит на окружности и, значит, является обшей точкой прямой и окружности (рис. 1, б). Прямая р и окружность не имеют других общих точек, так как для любой точки М прямой р. Отличной от точки Н, ОМ>ОН= r (наклонная ОМ больше перпендикуляра ОН), и, следовательно , точка М не лежит на окружности. Итак, если рас стояние от центра окружности до прямой равно радиусу то прямая и окружность имеют только одну общую точку.

3) d> r В этом случае -ОН> r поэтому . для любой точки М прямой р 0МОН.> r(рис. 1,а) Следовательно точка М не лежит на окружности. Итак, .если расстояние от центра окруж ности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.

Мы доказали, что прямая и окружность могут иметь одну или две общие точки и могут не иметь ни одной общей точки. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. На рисунке 2 прямая р - касательная к окружности с центром О, А - точка касания.

Докажем теорему о свойстве касательной.

Теорема. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство. Пусть р - касательная к окружности с центром О. А - точка касания (см. рис. 2). Докажем. что касательная р перпендикулярна к радиусу ОА.

Предположим, что это не так. Тогда радиус: ОА является наклонной к прямой р. Так как перпендикуляр, проведенный из точки О к прямой р, меньше наклонной ОА , то расстояния от центра О окружности до прямой р меньше радиуса. Следовательно, прямая р и окружность имеют две общие точки. Но это противоречит условию; прямая р - касательная. Таким образом, прямая р перпендикулярна к радиусу ОА. Теорема доказала.

Рассмотрим две касательные к окружности с центром О , проходящие через точку А и касающиеся окружности в точках В и С (рис. 3). Отрезки АВ и АС назовем отрезками касатель ных, проведенными из точки А. Они обладают следующим свойством, вытекающим из доказанной теоремы:

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Для доказательства этого утверждения обратимся к рисунку 3. По теореме о свойство касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, так как имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и 3=https://pandia.ru/text/78/143/images/image007_40.jpg" width="432 height=163" height="163">

Рис. 2 Рис. 3

https://pandia.ru/text/78/143/images/image010_57.gif" width="101" height="19 src=">.

Проведя через точку касания диаметр МЕ , будем иметь: ; поэтому

Рис. 1 Рис. 2

https://pandia.ru/text/78/143/images/image014_12.jpg" width="191 height=177" height="177">.jpg" width="227 height=197" height="197">

Зависимость между дугами, хордами и расстояниями хорд от центра.

Теоремы. В одном круге или в равных кругах :

1) если дуги, равны, то стягивающие их хорды равны и одинаково удалены от центра;

2) если две дуги, меньшие полуокружности, не равны, то большая из них стягивается большей хордой и из обеих хорд большая расположена ближе к центру .

1) Пусть дуга АВ равна дуге CD (рис. 1), требуется доказать, что хорды АВ и CD равны, а также равны и перпендикуляры ОЕ и OF, опущенные из центра на хорды.

Повернем сектор OAJB вокруг центра О в направлении, указанном стрелкой на столько, чтобы радиус ОБ совпал с ОС. Тогда дуга ВА. пойдет по дуге CD и вследствие их равенства эти дуги совместятся. Значит, хорда AS совместится с хордой CD и перпендикуляр ОЕ совпадет с OF (из одной точки можно опустить на прямую только один перпендикуляр), т. е. AB= CD и OE= OF.

2) Пусть дуга АВ (рис. 2) меньше дуги CD, и притом обе дуги меньше полуокружности; требуется доказать, что хорда АВ меньше хорды CD, а перпендикуляр ОЕ больше перпендикуляра OF . Отложим на дуге CD дугу СК, равную АВ, и проведем вспомогательную хорду СК , которая, по доказанному, равна хорде АВ и одинаково с ней удалена от центра. У треугольников COD и СОК две стороны одного равны двум сторонам другого (как радиусы), а углы, заключенные между этими сторонами, не равны; в этом случае, как мы знаем, против большего из углов, т. е. lCOD, должна лежать большая сторона, значит, CD> CK, и потому CD> AB.

Для доказательства того, что OE> OF, проведем OLXCK и примем во внимание, что, по доказанному, OE= OL; следовательно, нам достаточно сравнить OF с OL. В прямоугольном треугольнике 0 FM (покрытом на рисунке штрихами) гипотенуза ОМ больше катета OF; но OL> OM; значит, и подавно OL> OF. и потому OE> OF.

Теорема, доказанная нами для одного круга, остается верной и для равных кругов, потому что такие круги один от другого отличаются только положением.

Обратные теоремы. Так как в предыдущем параграфе рассмотрены всевозможные взаимно исключающие случаи относительно сравнительной величины двух дуг одного радиуса, причем получились взаимно исключающие выводы относительно сравнительной величины хорд и расстояний их от центра, то обратные предложения должны быть верны, в. именно:

В одном круге или е равных кругах:

1) равные хорды одинакова удалены от центра и стягивают равные дуги;

2) хорды, одинаково удаленные от центра, равны и стягивают равные дуги;

3) из двух неравных хорд большая ближе к центру и стягивает большую дугу;

4) из двух хорд, неодинаково удаленных от центра, которая ближе к центру, больше и стягивает большую дугу.

Эти предложения легко доказываются от противного. Например, для доказательства первого из них рассуждаем так: если бы данные хорды стягивали неравные дуги, то, согласно прямой теореме, они были бы не равны, что противоречит условию; значит, равные хорды должны стягивать равные дуги; а если дуги равны, то, согласно прямой теореме, стягивающие их хорды одинаково удалены от центра.

Теорема. Диаметр есть наибольшая из хорд .

Если соединим с центром О концы какой-нибудь хорды, не проходящей через центр, например хорды АВ (рис. 3) то получим треугольник АОВ, в котором одна сторона есть эта хорда, а две другие - радиусы, Но в треугольнике каждая сторона менее суммы двух других сторон; следовательно, хорда АВ менее суммы двух радиусов; тогда как всякий диаметр CD равен сумме двух радиусов. Значит, диаметр больше всякой хорды, не проходящей через центр. Но так как диаметр есть тоже хорда, то можно сказать, что диаметр есть наибольшая из хорд.

Рис. 1 Рис. 2

Теорема касательных.

Как уже было сказано, отрезки касательных, проведенных к окружности из одной точки, имеют одинаковую длину. Эту длину называют касательным расстоянием от точки до окружности.

Без теоремы о касательных не обходиться решение не одной задачи о вписанных окружностях, иными словами, об окружностях, касающихся сторон многоугольника.

Касательные расстояния в треугольнике.

Найдем длины отрезков, на которые стороны треугольника АВС разбиваются точками касания с вписанной в него окружностью (рис. 1,а), например касательное расстояние от точки А до окружности. Сложим стороны b и c , а затем из суммы вычтем сторону а . Учитывая равенство касательных, проведенных из одной вершины, получим 2. Итак,

ta=(b+ c- a)/ 2=p- a ,

где p=(a+ b+ c)/ 2 – полупериметр данного треугольника. Длина отрезков сторон, прилегающим к вершинам В и С , равны соответственно p- b и p- c.

Аналогично, для вневписанной окружности треугольника, касающейся (снаружи) стороны а (рис. 1,б), касательные расстояния от В и С равны соответственно p- c и p- b , а от вершины А - просто p .

Заметим, что эти формулы можно использовать и «в обратную сторону».

Пусть в угол ВАС вписана окружность, причем касательное расстояние от вершины угла до окружности равно p или p- a , где p – полупериметр треугольника АВС , а а=ВС . Тогда окружность касается прямой ВС (соответственно снаружи или внутри треугольника).

В самом деле, пусть, например, касательное расстояние равно p- a . Тогда наши окружности касаются сторон угла в тех же самых точках, что и вписанная окружность треугольника АВС , а значит, совпадает с ней. Следовательно, она касается прямой ВС .

Описанный четырехугольник. Из теоремы о равенстве касательных сразу получается (рис. 2,а), что

если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:

AD+ BC= AB+ CD

Отметим, что описанный четырехугольник обязательно выпуклый. Верно и обратное:

Если четырехугольник выпуклый и суммы его противоположных сторон равны, то в него можно вписать окружность.

Докажем это для четырехугольника, отличного от параллелограмма. Пусть какие-то две противоположные стороны четырехугольника, например AB и DC, при продолжении пересекутся в точке Е (рис. 2,б). Впишем окружность в треугольник ADE . Ее касательное расстояние te до точки E выражается формулой

te= ½ (AE+ ED- AD).

Но по условию суммы противоположных сторон четырехугольника равны, а значит, AD+ BC= AB+ CD , или AD= AB+ CD- BC . Подставив это значение в выражение для te , получим

te ((AE- AB)+(ED- CD)+ BC)= ½ (BE+ EC+ BC),

а это – полупериметр треугольника BCE . Из доказанного выше условия касания следует, что наша окружность касается BC .

https://pandia.ru/text/78/143/images/image020_13.jpg" width="336" height="198 src=">

Две касательные, проведённые к окружности из точки вне её, равны и образуют равные углы с прямой, соединяющей эту точку с центром, что следует из равенства прямоугольных треугольников АОВ и АОВ1

Напомним важное определение - определение окружности]

Определение:

Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R.

Обратим внимание на то, что окружностью называют именно множество всех точек, удовлетворяющих описанному условию. Рассмотрим пример:

Точки A, B, C, D квадрата равноудалены от точки Е, но они не являются окружностью (рис. 1).

Рис. 1. Иллюстрация к примеру

В данном случае фигура является окружностью, так как это все множество точек, равноудаленных от центра.

Если соединить любые две точки окружности - получаем хорду. Хорда, проходящая через центр, называется диаметром.

MB - хорда; АВ - диаметр; MnB - дуга, она стягивается хордой МВ;

Угол называется центральным.

Точка О - центр окружности.

Рис. 2. Иллюстрация к примеру

Таким образом, мы вспомнили, что такое окружность и основные ее элементы. Теперь перейдем к рассмотрению взаимного расположения окружности и прямой.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Считаем, что точка О не лежит на прямой Р.

По заданным окружности и прямой нам необходимо найти число общих точек.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

В первом случае, когда расстояние d меньше радиуса окружности r, точка М лежит внутри окружности. От этой точки мы отложим два отрезка - МА и МВ, длинна которых будет . Значения r и d нам известны, d меньше r, значит, выражение существует и точки А и В существуют. Эти две точки лежат на прямой по построению. Проверим, лежат ли они на окружности. Вычислим по теореме Пифагора расстояние ОА и ОВ:

Рис. 3. Иллюстрация к случаю 1

Расстояние от центра до двух точек равно радиусу окружности, таким образом, мы доказали, что точки А и В принадлежат окружности.

Итак, точки А и В принадлежат прямой по построению, принадлежат окружности по доказанному - окружность и прямая имеют две общих точки. Докажем, что других точек нет (рис. 4).

Рис. 4. Иллюстрация к доказательству

Для этого возьмем на прямой произвольную точку С и предположим, что она лежит на окружности - расстояние ОС=r. В таком случае треугольник равнобедренный и его медиана ON, которая не совпадает с отрезком ОМ, является высотой. Мы получили противоречие: из точки О опущено два перпендикуляра на прямую.

Таким образом, на прямой Р нет других общих точек с окружностью. Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки.

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности (рис. 5):

Рис. 5. Иллюстрация к случаю 2

Напомним, что расстояние от точки до прямой - это длина перпендикуляра, в данном случае ОН - перпендикуляр. Так как, по условию, длина ОН равна радиусу окружности, то точка Н принадлежит окружности, таким образом, точка Н общая для прямой и окружности.

Докажем что других общих точек нет. От противного: предположим, что точка С на прямой принадлежит окружности. В таком случае, расстояние ОС равно r, и тогда ОС равно ОН. Но в прямоугольном треугольнике гипотенуза ОС больше катета ОН. Получили противоречие. Таким образом, предположение неверно и нет никакой точки кроме Н, общей для прямой и окружности. Мы доказали, что в данном случае общая точка единственная.

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Расстояние от точки до прямой - длина перпендикуляра. Проводим из точки О перпендикуляр к прямой Р, получаем точку Н, которая не лежит на окружности, так как ОН по условию больше радиуса окружности. Докажем, что любая другая точка прямой не лежит на окружности. Это хорошо видно из прямоугольного треугольника , гипотенуза ОМ которого больше катета ОН, а значит, больше радиуса окружности, таким образом, точка М не принадлежит окружности, как и любая другая точка на прямой. Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 6).

Рис. 6. Иллюстрация к случаю 3

Рассмотрим теорему . Предположим, что прямая АВ имеет две общих точки с окружностью (рис. 7).

Рис. 7. Иллюстрация к теореме

Имеем хорду АВ. Точка Н, по условию, - середина хорды АВ и лежит на диаметре СD.

Требуется доказать, что в таком случае диметр перпендикулярен хорде.

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как .

Точка Н, по условию, - середина хорды, значит середина медианы АВ равнобедренного треугольника. Мы знаем, что медиана равнобедренного треугольника перпендикулярна его основанию, значит, является высотой: , отсюда , таким образом, доказано, что диаметр, проходящий через середину хорды, перпендикулярен ей.

Справедлива и обратная теорема : если диаметр перпендикулярен хорде, то он проходит через ее середину.

Задана окружность с центром О, ее диаметр СD и хорда АВ. Известно, что диаметр перпендикулярен хорде, нужно доказать, что он проходит через ее середину (рис. 8).

Рис. 8. Иллюстрация к теореме

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как . ОН, по условию, - высота треугольника, так как диаметр перпендикулярен хорде. Высота в равнобедренном треугольнике одновременно является медианой, таким образом, АН=НВ, значит, точка Н является серединой хорды АВ, значит, доказано, что диаметр, перпендикулярный хорде, проходит через ее середину.

Прямую и обратную теорему можно обобщить следующим образом.

Теорема:

Диаметр перпендикулярен хорде тогда и только тогда, когда он проходит через ее середину.

Итак, мы рассмотрели все случаи взаимного расположения прямой и окружности. На следующем уроке мы рассмотрим касательную к окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Edu.glavsprav.ru ().
  2. Webmath.exponenta.ru ().
  3. Fmclass.ru ().

Домашнее задание

Задание 1. Найти длины двух отрезков хорды, на которые разделяет ее диаметр окружности, если длина хорды - 16 см, а диаметр ей перпендикулярен.

Задание 2. Указать количество общих точек прямой и окружности, если:

а) расстояние от прямой до центра окружности - 6 см, а радиус окружности - 6,05 см;

б) расстояние от прямой до центра окружности - 6,05 см, а радиус окружности - 6 см;

в) расстояние от прямой до центра окружности - 8 см, а радиус окружности - 16 см.

Задание 3. Найти длину хорды, если диаметр ей перпендикулярен, а один из отрезков, отсекаемых диаметром от нее, равен 2 см.

В данном уроке мы изучим различные варианты взаимодействия окружности и прямой. Напомним определения, широко используемые в этом случае. Прямой называется неопределяемая аксиоматическая геометрическая фигура, представляющая собой ровную прямую линию без начала и конца. Окружностью именуется множество точек, равноудаленно лежащих от общего центра (центра окружности), соединенных общей кривой. Иначе говоря, окружность - это правильная замкнутая кривая, обрисовывающая максимально возможную площадь.

Собственно говоря, существуют три варианта взаимного расположения окружности и прямой. В первом случае, прямая пролегает полностью вне заданной окружности, нигде её не пересекая и не затрагивая. Если же прямая затрагивает ровно одну определенную точку из множества на окружности, то эта линия именуется касательной, по отношению к данной окружности.

Касательная имеет одно важнейшее свойство. Радиус, проведенный к точке касания, является перпендикуляром к самой прямой. На видео представлена окружность с центром О, прямой А и точкой касания К. Так как эта точка в единственном числе, то прямая А касательна данной окружности. А угол при К, образованный радиусом и любой частью прямой, является прямым - равен 90 градусам. Стоит также отметить важную особенность - касательная имеет исключительно одну точку касания. Невозможно провести прямую так, чтобы касательно затронуть две точки на окружности.
Если же наша прямая А проходит через всю окружность, затрагивая её внутреннюю область, то это уже третий частный случай взаимодействия данных фигур. При этом, прямая проходит строго через две точки на окружности - скажем, В и С. Она именуется секущей окружности. Секущая всегда проходит только через две любые точки из множества на кривой. Так как точек в окружности множество, то реализуемо провести бесконечное число секущих (равно как и касательных) для заданной окружности.

Внутренняя часть секущей прямой, по сути отрезок ВС, является хордой для окружности. Если секущая проходит через центр окружности, то внутренняя ее часть представлена наибольшей хордой - диаметром. При этом, точки пересечения В и С находятся на наибольшем удалении друг от друга (по свойству диаметра). Легко понять, что противоположный частный случай - это секущая, образующая хорду с бесконечно малым значением, по сути, - это уже касательная.

В задачах часто встречается отрезок Р - он соединяет наиболее коротким путем подходящую точку на прямой и центр самой окружности. Иначе говоря, Р - это отрезок ТО, где Т - точка на прямой ВС. Этот отрезок является перпендикуляром для прямой, его продолжение до самой окружности - ее радиусом. Линейное значение этого отрезка можно вычислить через косинус угла, образованного радиусом и секущей прямой, с вершиной в точке сечения.



Понравилась статья? Поделитесь ей
Наверх