Методы защиты для медицинского персонала и для пациентов от рентгеновского излучения. Устройство для защиты рентгеновских трубок от перегрузок Защита от рентгеновского излучения

Повреждающеедействие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при рентгенодиагностике. Уровень безопасного воздействия излучения на организм человека напрямую связан с понятием предельно допустимых доз облучения (ПДД). ПДД - это наибольшее значение индивидуальной дозы, полученной при облучении за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких-нибудь патологических изменений. Различают ПДД для 3 группы радиочувствительных органов:

1 группа - ПДД – 5 бэр в год – все тело, половые органы, красный костный мозг.

2 группа - ПДД – 15 бэр в год – мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, ЖКТ, легкие, хрусталик глаза.

3 группа - ПДД – 30 бэр в год – кожа, костная ткань, кисти, предплечья, лодыжки, стопы.

Способы защиты от рентгеновского излучения:

1. Защита экранированием:

а) стационарные средства: баритовая штукатурка стен кабинетов, двери с листовым свинцовым покрытием, просвинцованное стекло в смотровых окнах;

б) передвижные: защитные ширмы, так же с листовым свинцовым покрытием;

в) индивидуальные средства: фартуки, перчатки, колпаки и бахилы из просвинцованной резины для персонала и покрытие из просвинцованной резины для защиты наиболее чувствительных тканей пациента во время проведения различных методов диагностики.

2. Защита расстоянием – расположение рабочих мест персонала с максимальным удалением их от источника излучения, максимально возможное расстояние между рентгеновской трубкой и кожей пациента (кожно-фокусное расстояние). При увеличении этого расстояния вдвое, доза поглощённой радиации уменьшается в четыре раза.

3. Защита временем - сокращение времени облучения снижает поглощённую суммарную дозу. В связи с этим существует строгая регламентация рабочего времени дня рентгенолога и время проведения рентгендиагностических процедур. Так при рентгенографии экспозиция длится в среднем до 1-3 секунд, при рентгеноскопии грудной клетки – до 5 минут, а при рентгеноскопии желудка - до 10 минут.

Основными принципами радиационной защиты пациентов являются:

Проведение исследований по строгим показаниям;

Исключение дублирующих друг друга повторных исследований;

Высокая квалификация персонала, проводящего исследования;

Использование исправного диагностического оборудования;

Применение индивидуальных средств защиты для участков тела, находящихся вне зоны облучения (гонады, щитовидная железа, молочная железа, хрусталик);

Правильное позиционирование пациентов, ограничение зоны облучения и времени воздействия излучения.

Контроль лучевой нагрузки пациента по индивидуальной дозиметрии.

Доза излучения должна быть достаточной для получения качественных изображений.

Уровни облучения персонала отделений лучевой диагностики не должны превышать 20 мЗв в год. Для людей, находящихся рядом с кабинетами лучевой диагностики или оказывающими помощь при исследованиях, доза облучения не должна превышать 5 мЗв в год.

На персонал, работающий в отделениях лучевой диагностики, чаще воздействует вторичное излучение, которое образуется в связи с рассеянием прямого пучка, проходящего через тело пациента, и элементы конструкции оборудования. Интенсивность вторичного излучения в 100-1000 раз меньше, чем первичного, но оно распространяется во всех направлениях. Защита персонала отделений лучевой диагностики, обеспечивается следующими факторами:

Использованием средств радиационной защиты (ширмы, экраны, очки, перчатки, фартуки и пр.);

Специальной планировкой и защитой кабинетов рентгенодиагностики и пультовых;

Постоянным обучением персонала правилам и принципам радиационной безопасности;

Допуск к работе только сертифицированных врачей-радиологов и рентгенолаборантов;

Проведение регулярного радиационного и дозиметрического контроля.

Ультразвуковой метод исследования

Ультразвуковой метод диагностики - это способ получения изображения органов на основе регистрации и компьютерного анализа отражённых от биологических структур ультразвуковых волн. Ультразвук – это звуковые колебания выше 20кГц. Физической основой ультразвука является пьезоэлектрический эффект открытый братьями Кюри в 1881 году. В 20-30 года ХХ века С.Я. Соколов разработал и внедрил ультразвуковую промышленную дефектоскопию. В это же время были первые попытки использования УЗИ в медицине, но наиболее широко данный метод стал использоваться в 60 годы за рубежом и с 70-80 – х годов в России.

Сущность пьезоэлектрического эффекта заключается в том, что при деформации монокристаллов некоторых химических соединений (кварц, титанат бария, сернистый кадмий) под действием ультразвуковых волн на их поверхности возникают противоположные по знаку электрические заряды. И, наоборот, при подаче на эти кристаллы электрического тока в них возникают механические колебания с излучением ультразвуковых волн. Таким образом, пьезоэлемент может одновременно играть роль источника и служить приёмником ультразвуковых волн. Эту часть аппарата УЗИ называют акустическим преобразователем, трансдюсером или датчиком. Высокочастотные колебания обладают более высокой разрешающей способностью. В медицине используют частоты 2-10 МГц. При этом разрешающая способность УЗИ составляет 1-3 мм.

Любая ткань препятствует распространению ультразвука, то есть обладают различным акустическим сопротивлением (импедансом). При распространении ультразвука в неоднородных тканях на границе двух сред одна часть волн продолжает своё движение и постепенно поглощается тканями, а другая часть волн отражается. Чем выше плотность ткани, тем больше волн отражается, а на экране дисплея появляется более интенсивная и яркая белая картинка. Полным отражателем является граница между тканями и воздухом. Поверхностно расположенные структуры исследуют с частотой 7,5 МГц и выше, а глубоко расположенные структуры исследуют с частотой 3,5 МГц.

Методики УЗИ

1. УЗИ в В-режиме – это получение информации в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени. Биологические структуры отличают по их эхогенности. Анэхогенные образования (заполнены жидкостью) выглядят на экране чёрными, гипоэхогенные (ткани с высокой гидрофильностью) серо-чёрные. Эхопозитивным является большинство тканей, и они дают серый цвет. Ткани с повышенной эхогенностью (плотные ткани) выглядят на экране светло серыми. А гиперэхогенные объекты полностью отражают ультразвук и на экране выглядят белыми при этом вслед за ними появляется тёиная дорожка (акустическая тень). Современные аппараты УЗИ выводят на экран множество изображений, каждое из которых длится сотую долю секунды, что позволяет получить меняющееся изображение органа в реальном масштабе времени.

2. УЗИ в М-режиме – это одномерное эхоскопическое изображение органа. Получаемое изображение отражает изменение положения части органа во времени. Чаще всего такой режим используют при эхографии сердца и его клапанов.

3. Допплерография - методика, основанная на эффекте Доплера, сущность которого состоит в том, что при движении объекта в сторону датчика частота сигнала увеличивается, а при удалении от источника - уменьшается. Виды допплерографии:

а) потоковая спектральная допплерография – оценка кровотока в крупных сосудах и камерах сердца, запись которого представляет собой спектрограмму,

б) цветное допплеровское картирование – позволяет определить направление тока крови в сосуде (красный - к датчику, а синий - от датчика).

в) энергетическая допплерография –позволяет оценить плотность эритроцитов в заданном объёме ткани и дифференцировать кровоснабжаемые и некровоснабжаемые ткани.

г) конвергентная цветовая допплерография – сочетание методики цветного допплеровского картирования и энергетического допплера (б+в).

д) дуплексное исследование – сочетание УЗИ в В-режиме, с потоковым и энергетическим цветовым картированием.

е) трёхмерное допплеровское картирование и трёхмерная энергетическая допплерография – это методики, дающие возможность наблюдать объёмную картину пространственного расположения кровеносных сосудов в режиме реального времени.

4. Эхоконтрастные методы УЗ-исследования. Эта методика основана на внутривенном введении ультразвукового контраста, включающего свободные микропузырьки газа диаметром менее 5 мм и сохраняющих стабильность в системном кровотоке более 5 минут.

5. Эндоскопическое УЗИ. Данный метод УЗИ позволяет определить эхоструктуру объёмных образований или стенки полого органа в ходе эндоскопического исследования. Методика позволяет оценить степень прорастания опухоли в стенку органа.

6. Интракорпоральное УЗИ – трансректальное, трансвагианльное, трасэзофагеально, трансуретрально и т.д.

Клиническое использование УЗИ: плановые исследования паренхиматозных органов, неотложная диагностика травм и заболеваний брюшной полости, патология сердца, гнойные заболевания мягких тканей и полостей организма, мониторинг состояния того или иного органа в процессе лечения и после операции, интраоперационная диагностика патологии и степени распространённости процесса, исследование суставов, позвоночного столба, допплерография магистральных и интракраниальных сосудов, артерий и вен среднего калибра. Методики УЗИ широко используется в акушерстве и гинекологии для пренатальной диагностики врождённых аномалий и патологии плода, а также для диагностики заболеваний и опухолей женской половой сферы.

Защита от ионизирующего излучения реактора базируется на его экранировании и ослаблении защитными материалами (создание биологической защиты). Выбор материалов для биологической защиты зависит от вида излучения. Так, а-частицы полностью поглощаются одеждой, резиновыми перчатками. Для защиты от Р-частиц операции с радиоактивными веществами необходимо проводить за специальными экранами (ширмами) или в защитных шкафах. Рентгеновское и у-излучение наиболее полно поглощается веществами с высокой плотностью (свинец, сталь, а также бетон). Для защиты от нейтронов используют вещества с малым атомным номером, например воду, полиэтилен.[ ...]

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатуру (в их состав входит сульфат бария - Ва804). Эти материалы надежно защищают персонал, от воздействия гамма- и рентгеновского излучения.[ ...]

При перечислении антропогенных источников излучений следует указать только те, которые представляют опасность для всего населения. Здесь следует особенно отметить медицину, использующую рентгеновские радионуклидные излучения в диагностических и терапевтических целях. В восьмидесятые годы многие старые рентгеновские установки были заменены современной аппаратурой, использующей меньшие дозы облучения, что позволило сократить лучевую нагрузку на пациентов. Защитой от действия излучений служит и надежное экранирование тех участков тела, которые не подвергаются облучению в медицинских целях. Эффективность этих мероприятий зависит как от качества работы медицинского персонала, так и от частоты контактов больного с источниками излучения. Все же, несмотря на достигнутые успехи в области рентгенологии и радиологий, медицина остается основным источником искусственного воздействия излучения на организм.[ ...]

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.[ ...]

Свинец, его окись и соли применяют для изготовления аккумуляторов, для защиты от рентгеновского излучения и у-лучей, для изготовления типографских сплавов, бронзы, в резиновой промышленности и др.[ ...]

Однако продолжительное или слишком интенсивное воздействие на организм рентгеновских лучей, особенно жестких, вызывает тяжелые заболевания, аналогичные возникающим при у-облучении. По этой причине меры защиты от рентгеновского излучения аналогичны используемым против у-излучения.[ ...]

К первой категории относятся работы, где радиоактивные вещества применяются в закрытом виде - герметичные источники. Здесь возможно только внешнее облучение, поэтому необходима защита от рентгеновского и гамма-излучения.

Достаточно большое количество медицинских обследований использует рентгеновские лучи. Об их вреде на организм написаны огромные трактаты, поэтому эта сторона их применения изучена максимально хорошо.

Чтобы обезопасить всех присутствующих в кабинете в момент проведения диагностики, используются специальные защитные двери, ширмы и листы из свинца. Учитывая их важное предназначение, необходимо максимально тщательно подходить к компаниям-изготовителям защитной продукции, доверяя только таким спецам, как, например, компания «МетПромСтар», которая занимается металлопрокатом уже более 10 лет. Ее партнерами за это длительное время стали все лидеры отрасли, что говорит уже о многом. Поэтому, заказывая свинцовые листы для защиты от рентгеновского излучения, можно быть уверенными в стопроцентном качестве каждой единицы, не жалея ни минуты о потраченных на покупку средствах. Обслуживание компания «МетПромСтар» вывела на европейский уровень, предлагая своим клиентам и партнерам защиту от рентгеновских лучей наилучшего качества.

Свинцовые листы для защиты от рентген-лучей: какими они должны быть

Свинец – один из самых используемых металлов в мировой промышленности. Об этом говорят и следующие данные: всего за 5 месяцев его добывают около 2 000 000 тонн. Большая часть сырья уходит в машиностроение, а остальное используют для создания защитных приспособлений от радиации и шума. Практически ни один рентген-кабинет в частном или государственном медицинском учреждении не обходится без свинцовой обшивки стен, защитных дверей из свинца, мобильных свинцовых ширм, а также индивидуальных средств защиты медицинского персонала. Весь этот ассортимент имеется в каталоге компании «МетПромСтар», поэтому купить свинцовые листы и защитные двери можно оптом, сэкономив при этом внушительную сумму.

Исследование рентген-лучами считается одним из самых точных, предоставляя врачам наиболее полную информацию об исследованном органе. На снимке отображается проекция внутреннего органа человека, увидеть который другим способом не представляется возможным. Рентген в России стал применяться более 100 лет назад, но это были в основном частные кабинеты. Первая же государственная клиника была создана 95 лет назад, после чего рентген-диагностику стали использовать все более часто. Сфера ее применения с тех времен существенно расширилась, поэтому и защита от облучения стала более актуальной.

Чтобы защита от радиационных лучей стала стопроцентной, необходимо использовать свинец не менее 20 см толщиной. Именно этот материал используется при создании экранирования в рентген-кабинетах. Листовой свинец необходимой толщины можно заказать в «МетПромСтар» по выгодным ценам, а его доставка будет осуществлена в любой населенный пункт страны.

Все нормы защитных приспособлений в кабинете с рентгеновским излучением регламентируются СанПин №2,6,1. 1192-3. Защита должна быть такой, чтобы экранирующий материал снижал облучение до минимума. И достичь этого можно только правильно подобранными материалами. Это означает, что для каждого конкретного кабинета понадобятся свинцовые листы определенного размера и толщины, что обусловлено размерами самого помещения. Нельзя устанавливать в рентген-кабинете первые попавшиеся листы из свинца, не учитывая его плановые особенности. Способность материала обеспечивать необходимые по нормам параметры защиты называется «свинцовый эквивалент», что означает определенное числовое значение, указывающее на толщину свинцового шара. Так, стационарные средства защиты (двери и окна) должны превышать указанный свинцовый эквивалент на четверть.

Прежде чем устанавливать защиту рентген-кабинета, необходимо провести предварительный расчет каждого из защитных параметров. Свинцовые листы и двери должны четко соответствовать указанным параметрам, не отклоняясь от них ни на миллиметр.

Стационарные средства радиационной защиты процедурной и других помещений рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы (ПД) для персонала и населения (табл. 9.1, т.1, ).

Значения допустимой мощности эффективной дозы ДМЭД (мкЗв/ч) рассчитываются, исходя из основных пределов годовой дозы для соответствующих категорий облучаемых лиц (табл. 9.1, т.1) и возможной продолжительности их пребывания в помещениях и на территориях различного назначения по формуле:

где ПД - основной предел годовой дозы для соответствующей кате-

гории лиц (табл. 9.1, т.1), мЗв; с - продолжительность работы на рентгеновском аппарате в течение года при односменной работе персонала

группы A, c 1500 ч (30-часовая рабочая неделя); п - коэффициент сменности, учитывающий возможность двухсменной работы на рентгеновском аппарате и связанную с этим увеличенную продолжительность облучения персонала группы Б и населения, отн. ед.; Т. коэффициент занятости помещения или территории для соответствующих категорий облучаемых лиц, учитывающий максимально возможную продолжительность их облучения, отн. ед.; 10 - множитель для перевода мЗв в мкЗв.

В табл. 10.1 приведены значения ДМЭД для различных помещений и территорий, в зависимости от значений коэффициентов занятости Т, сменности п и продолжительности работы с учетом сменности t c -n.

Приведенные в табл. 10.1 ДМЭД используются для целей радиационного контроля.

Расчет стационарной защиты при проектировании основан на определении требуемой кратности ослабления К мощности поглощенной дозы в воздухе рентгеновского излучения в данной точке в

отсутствие защиты до такого значения проектной мощности дозы 1 за защитой, которая обеспечивает не превышение ДМЭД. Кратность ослабления К защиты вычисляется по формуле:

где: к - коэффициент перехода от поглощенной дозы в воздухе к эффективной дозе, Зв/Гр; с учетом коэффициента запаса на проектирование, равного 2, консервативно принят 1 Зв/Гр; R - радиационный выход рентгеновского аппарата, мГр-м /(мА-мин); W - рабочая нагрузка рентгеновского аппарата, (мА-мин)/нед; N - коэффициент направленности излучения, отн. ед.; 30 - значение нормированного времени работы рентгеновского аппарата в неделю при односменной работе персонала группы А (30 - часовая рабочая неделя), ч/нед; г - расстояние от фокуса рентгеновской трубки до точки расчета, м; 10 - множитель для перевода мГр в мкГр.

Таблица 10.1

Допустимая мощность эффективной дозы (ДМЭД) в помещениях рентгеновского кабинета, в других помещениях и на прилегающей территории в зависимости от значений параметров Т, n, t c -n

Помещение, территория

Помещения постоянного пребывания персонала группы А (процедурная, комната управления, комната приготовления бария, фотолаборатория, кабинет врача- рентгенолога, предоперационная и ДР-)

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета, имеющие постоянные рабочие места персонала группы Б

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета без постоянных рабочих мест (холл, гардероб, лестничная площадка, коридор, комната отдыха, уборная, кладовая и др.)

Помещения эпизодического пребывания персонала группы Б (технический этаж, подвал, чердак и др.)

Палаты стационара, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета

Территория, прилегающая к наружным стенам процедурной рентгеновского кабинета

Значение радиационного выхода R берется из технической документации на рентгеновский аппарат или протокола контроля эксплуатационных параметров в зависимости от напряжения на рентгеновской трубке. При их отсутствии используются средние значения R, приведенные в табл. 6 приложения 3 Правил .

Значения номинальной рабочей нагрузки W и анодного напряжения V , используемых для расчета стационарной защиты рентгеновских кабинетов, в зависимости от типа и назначения рентгеновского аппарата приведены в табл. 10.2. Значения W рассчитаны с учетом регламентированной длительности проведения соответствующих рентгенологических процедур.

Коэффициент направленности N учитывает направление пучка рентгеновского излучения. Суммарно по всем направлениям падения первичного пучка рентгеновского излучения (с учетом всех возможных вариантов позиционирования пациента) значение N принимается равным 1. Для рассеянного излучения значение N принимается 0,05. Для аппаратов с подвижным источником излучения (сканирующие аппараты: рентгеновский компьютерный томограф, стоматологический аппарат для панорамных снимков и др.) значение N принимается равным 0,1.

Таблица 10.2

и анодное напряжение U для расчета __стационарной защиты рентгеновских кабинетов_

Рентгеновская аппаратура*

напряжение,

Флюорографический аппарат с люминесцентным экраном и оптическим переносом изображения, пленочный или цифровой

Флюорографический аппарат со сканирующей линейкой

Флюорографический малодозо- вый аппарат с УРИ, ПЗС- матрицей и цифровой обработкой изображения

Рентгенодиагностический аппарат общего назначения, пленочный или цифровой

Рентгеновские аппараты для интервенционных процедур (ангиографические, хирургические)

Рентгеновский компьютерный томограф

Хирургический передвижной аппарат с УРИ

Палатный рентгеновский аппарат

Рентгеноурологический аппарат

Рентгеновский аппарат для литот- рипсии

Рентгеновская аппаратура*

напряжение,

Маммографический аппарат пленочный или цифровой

Маммографический аппарат с цифровым приемником изображения, сканирующий

Рентгеновский аппарат для планирования лучевой терапии (симулятор)

Аппарат для близкодистанционной рентгенотерапии

Аппарат для дальнедистанционной рентгенотерапии

Остеоденситометр для всего тела

Номинальное

Стоматологический аппарат для прицельных снимков пленочный

Стоматологический аппарат для прицельных снимков высокочувствительный пленочный или цифровой

Стоматологический аппарат для панорамных снимков пленочный или цифровой

Стоматологический рентгеновский компьютерный томограф

Микрофокусный рентгеновский аппарат с максимальным анодным током не более 0,1 мА

Примечания: *Для аппаратов, не вошедших в табл. 11.2, а также при нестандартном применении перечисленных типов аппаратов W рассчитывается по значению фактической экспозиции при стандартизированных значениях анодного напряжения. Для рентгеновских аппаратов, в которых максимальное анодное напряжение ниже указанного в табл. 11.2, при расчетах и измерениях необходимо использовать максимальное напряжение, указанное в технической документации на аппарат.

Расстояние от фокуса рентгеновской трубки до точки расчета определяется по проектной документации на рентгеновский кабинет. За точки расчета защиты принимаются точки, расположенные на высоте 1 м в защищаемом помещении: над и под процедурной - в точках прямоугольной сетки с шагом 1-2 м; смежно по горизонтали - на расстоянии 10 см от стены по всей длине стены с шагом 1-2 м.

На территории учреждения за точки расчета принимают точки, расположенные на расстоянии 10 см от наружной стены помещения процедурной на высоте 1 м, а при наличии окон - до 2 м от основания здания.

При расчете радиационной защиты рентгеновского стоматологического кабинета, расположенного смежно с жилыми помещениями, за точки расчета защиты принимаются точки, расположенные: вплотную к внутренним поверхностям стен кабинета, размещенного смежно по горизонтали с жилыми помещениями; на уровне пола кабинета при расположении жилого помещения под кабинетом; на уровне потолка кабинета при расположении жилого помещения над кабинетом.

На основании рассчитанных значений кратности ослабления

^ определяют необходимые значения свинцовых эквивалентов элементов стационарной защиты. В табл.1 приложения 3 представлены значения свинцовых эквивалентов в зависимости от значения кратности ослабления в диапазоне напряжений на рентгеновской трубке от 50 до 250 кВ.

Средства защиты, поставляемые в виде готовых изделий (защитные двери, защитные смотровые окна, ширмы, ставни, жалюзи и др.), должны обеспечивать кратность ослабления излучения, предусмотренную расчетом защиты, содержащимся в технологической части проекта рентгеновского кабинета.

Для изготовления стационарной защиты могут быть использованы материалы, обладающие необходимыми конструкционными и защитными характеристиками, отвечающие санитарно-гигиеническим требованиям. Защитные характеристики (свинцовые эквиваленты) основных строительных и специальных защитных материалов приведены в табл. 2-5 приложения 3 . При применении материалов, не перечисленных в табл. 2-5 приложения 3 , необходимо иметь документы, подтверждающие их защитные свойства или должны быть определены защитные характеристики в аккредитованных организациях с использованием контрольных образцов.

Расчет защиты для двух или более рентгеновских аппаратов, установленных в одной процедурной, должен проводиться по суммарной рабочей нагрузке от всех аппаратов. Необходимая толщина защитных ограждений выбирается, исходя из максимальных рассчитанных значений кратности ослабления. Эти же требования предъявляются при расчете защиты комнаты управления, смежной с двумя процедурными помещениями.

В процедурной рентгеновского кабинета, где пол расположен непосредственно над грунтом или потолок находится непосредственно под крышей (если она не используется), защита от излучения в этих направлениях не предусматривается.

Коммуникации через стены и перекрытия помещений рентгеновских кабинетов (воздуховод, водопровод, электрический кабель) должны быть оснащены защитой, обеспечивающей безопасность персонала. Коммуникации рекомендуется размещать вне зоны прямого пучка излучения.

Радиационная защита обеспечивает безопасность персонала и больных от вредного воздействия рентгеновского излучения. Необходимо ознакомиться с основными понятиями, характеризующими электромагнитное излучение.

Доза

Дозой называется часть энергии излучения, которая передается облучаемой ткани в виде ионизации.

Мощность дозы это доза, передаваемая одному грамму ткани за единицу времени.

Интегральная доза - это доза, передаваемая за все время облучения.

В настоящее время на практике применяется несколько понятий, характеризующих дозу излучения.

Поглощенная доза для любого ионизирующего излучения равняется той энергии, которая сообщается одному грамму облучаемого вещества ионизирующими частицами. Единица поглощенной дозы 1 рад (Radiation Absoled Dose), 1 рад = 100 эрг/г = 10 -2 дж/кг.

Мощность поглощенной дозы это поглощенная доза за единицу времени. Единицы мощности поглощенной дозы, применяемые на практике: мрад/час; рад/мин; рад/час, где 1 мрад = 10 -3 рад. Интегральная поглощенная доза - это доза, поглощенная всем объемом облучаемой части объекта за все время облучения.

Единица интегральной поглощенной дозы - 1 г рад.

1 г рад = 100 эрг = 10 -5 дж - суммарная поглощенная энергия.

При поглощении излучения веществом температура вещества повышается, следовательно, по изменению температуры вещества можно судить о поглощенной дозе. Однако изменение температуры настолько малое, что измерение интегральной поглощенной дозы с помощью такого метода возможно только в лабораторных условиях.

Экспозиционная доза это способность рентгеновского излучения ионизировать воздух в данной точке пространства. Единица измерения экспозиционной дозы 1 рентген (р). 1 р - это такая доза рентгеновского или гамма-излучения, которая создает 2,083 х 10 9 пар ионов в 1,293 мг воздуха, что соответствует 1 см³ воздуха при давлении 760 мм рт. ст.

1 р = 2,58 х 10 -4 а х сек/кг

1 р создает 1,61 х 10 12 пар ионов в 1 г воздуха.

Экспозиционной дозе 1 р в мягких тканях тела соответствует поглощенная доза 0,97 рад. Поглощенная доза обычно пропорциональна экспозиционной дозе. Коэффициент пропорциональности практически не зависит от характера излучения. Мощность дозы - это доза за единицу измерения.

Единицы мощности экспозиционной дозы , применяемые на практике: мр/ч; р/мин; р/ч; р/неделя; р/год. Мощность экспозиционной дозы при облучении объекта, находящегося на расстоянии 0,5 м от фокуса рентгеновской трубки с анодным напряжением и током 40 кв и 20 ма, за время 4 - 5 сек будет приблизительно 1 р/мин. Мощность экспозиционной дозы измеряется ионизационной камерой. Стенки ионизационной камеры покрываются веществами, атомное число которых близко к атомному числу применяемого газа. С точки зрения поглощения и рассеяния излучения эти вещества ведут себя так же, как применяемый газ.

Допустимая поглощенная доза для человека . В настоящее время считается, что максимально допустимая доза для человека, не вызывающая патологических изменений организма, приблизительно 0,1 р за неделю. С точки зрения максимально допустимой дозы стандартами считаются рекомендации Международного Комитета Радиологической Защиты (ICRP)

Максимально допустимая доза - это такая поглощенная доза, которая приводит к патологическим изменениям в организме или повреждению генетического аппарата клетки только в редчайших случаях (вероятность близка к 0).

Защита от прямого и рассеянного рентгеновского излучения должна быть такой эффективной, чтобы поглощенная доза в любой точке защищаемого рабочего места в течение тридцатишестичасовой рабочей недели не превышала 0,1 р.

Основные принципы защиты, защитные материалы

Согласно гипотезе Эйнштейна, энергия любого электромагнитного колебания, в том числе и рентгеновского излучения, концентрируется в фотонах. При столкновении фотона с атомом его энергия частично (эффект Комптона) или полностью (фотоэлектронная абсорбция) передается атому, который ионизируется.

Возникающие в облучаемых тканях тела ионы оказывают вредное действие. Мы подчеркиваем только наиболее важные положения, касающиеся этого.

1. К биологическим изменениям в организме приводит только поглощенная им доза излучения. Жесткое рентгеновское излучение с короткой длиной волны поглощается телом в меньшей степени, чем «длинноволновое» мягкое излучение.

2. Влияние рентгеновского излучения на организм зависит от величины поглощенной дозы.

3. Последствия поглощенного организмом рентгеновского излучения выявляются только по истечении латентного периода. Длительность латентного периода иногда достигает нескольких лет. Вредное действие излучения может сказаться иногда только на последующих поколениях.

При прохождении рентгеновских лучей через любое вещество, в том числе и человеческое тело, их интенсивность меняется по экспоненциальному закону:

I1 = I0e -md , где:
I0 - интенсивность падающего излучения,
I1 - интенсивность излучения после прохождения через вещество,
m коэффициент ослабления,
d - длина пути рентгеновских лучей в веществе.

Коэффициент ослабления и состоит из двух компонентов:

m = m1 + o, где:
m1 - коэффициент поглощения,
о - коэффициент рассеивания.

У элементов с большим атомным весом (порядковый номер которых больше 20-ти) коэффициентом рассеивания можно пренебречь.

Коэффициент поглощения m1 зависит от плотности и порядкового номера вещества, а также от длины волны рентгеновского излучения:

m1 = cgz³λ³, где:
c - универсальная физическая постоянная,
g - плотность материала,
z - порядковый номер элемента в таблице Менделеева,
λ - длина волны.

Итак: если на какое-либо вещество падают рентгеновские лучи интенсивностью I0 и, проходя через него, имеют интенсивность I1, то I0 - I1 поглощается и рассеивается молекулами вещества. Длина волны рассеянного излучения больше, чем длина волны падающих лучей. Отношение количества поглощенного и рассеянного излучения зависит от характера вещества и длины волны.

Чем больше порядковый номер элемента, тем интенсивнее элемент поглощает и меньше рассеивает излучение. Поэтому для защиты от рентгеновских лучей применяются элементы с большим порядковым номером, из них наиболее часто - свинец. Поглощение зависит также от плотности и толщины материала. Это учитывается при расчете защиты. Поглощение других веществ, применяемых для защиты, задается по свинцовому эквиваленту. Под свинцовым эквивалентом понимают толщину материала, которая поглощает рентгеновское излучение так же, как свинцовая пластина толщиной 1 мл. Свинцовый эквивалент материалов, наиболее часто применяемых при защите от рентгеновского излучения, дается в таблице 2.

Защита от рентгеновского излучения, защитные средства

На основе вышесказанного практические возможности защиты сводятся к следующему:

1. Уменьшение времени пребывания в сфере источника рентгеновского излучения.

2. Оптимальный выбор характеристик рентгеновского излучения, применяемого для исследования и лечения (силы тока и напряжения генерирования, величины поля облучения).

3. Отфильтрование мягкого, не используемого излучения с помощью алюминиевого фильтра, расположенного непосредственно на стеклянной оболочке рентгеновской трубки.

4. Увеличение расстояния между источником излучения и объектом.

5. Применение защитных ширм из поглощающих материалов.

Меры радиационной защиты, описанные в пунктах 1 - 3, не требуют объяснения.

Расстояние от источника рентгеновских лучей . При диагностических исследованиях минимальное расстояние между фокусом рентгеновской трубки и исследуемым составляет 35 см (кожно-фокусное расстояние). Это расстояние обеспечивается автоматически конструкцией просвечивающего и съемочного устройства (рис. 5.1).


Рис. 5.1. Кожно-фокусное расстояние (кф)
1. фокус; 2. кожух рентгеновской трубки; 3. окно; 4. диафрагма; 5. опорная стенка; 6. исследуемый объект; 7. просвечивающий экран; 8. свинцовое стекло; 9. место врача, проводящего исследование

В рентгенотерапевтических аппаратах расстояние между фокусом рентгеновской трубки и облучаемой частью тела зависит от высоты тубуса и меняется в пределах 30 - 50 см. Во время работы рентгеновского аппарата обслуживающий персонал должен находиться на расстоянии не менее 1,5 м от источника излучения. При этом обязательно применение защитной ширмы. В настоящее время строятся такие рентгеновские кабинеты, в которых рентгеновский аппарат управляется из отдельного помещения.

При диагностических процедурах защита больного обеспечивается следующими мероприятиями. При обзорных снимках осуществляется защита гонад. При томографии и снимках лучами Букки используется фартук из свинцовой резины. При снимках таза и каудального отдела позвоночника применяется дополнительная гонадная защита (см. гл. 10). Защитить больного от рассеянного излучения, возникающего в его теле при съемке, невозможно. Поскольку врач находится перед просвечивающим экраном во время всего рабочего дня, он получает наибольшую дозу. Необходимо, чтобы рабочие места - у штатива при просвечивании и за защитной ширмой при рентгенографии были хорошо защищены. Для защиты от прямого излучения служит свинцовое стекло, покрывающее просвечивающий экран, свинцовый эквивалент которого равен 2 мм, а также дистинктор-тубусы, средства для дистанционной пальпации. От рассеянного излучения врача защищает фартук из свинцовой резины, подвешенный на нижней части просвечивающего экрана (свинцовый эквивалент 1,2 мм). С двух сторон просвечивающего экрана расположены два листа из свинцовой резины, служащие для защиты рук врача. У просвечивающих экранов, снабженных устройством для прицельных снимков, защиту рук обеспечивает само устройство. Для защиты служит также подвижная малая защитная ширма-стул шириной 1 м.

Во время просвечивания на трахоскопе врач должен стоять. В этом случае для защиты от рассеянного рентгеновского излучения применяется передвижная защитная ширма высотой до уровня груди врача и шириной приблизительно 70 см, покрытая свинцовой резиной. Во время исследования врач использует личные средства защиты: перчатки и фартук из свинцовой резины (свинцовый эквивалент 0,2 - 0,5 мм).

При работе аппарата рентгенолаборант находится за защитной ширмой или в отдельном помещении, откуда он управляет рентгеновским аппаратом. В последнем случае рентгенолаборант работает при нормальном освещении в абсолютно защищенном месте.

В рентгенотерапии для защиты больного применяют фильтры и тубусы. С помощью фильтров регулируется глубина облучения, а с помощью тубусов - кожно-фокусное расстояние и величина облучаемого поля. Стенки тубуса защищают от рассеянного рентгеновского излучения. При облучении без тубуса необлучаемые части тела больного защищают листами свинцовой резины и другими лучепоглощающими веществами (таблица 3 и 4). Во время облучения врач и рентгенолаборант не должны находиться в помещении, где производится облучение. Рентгеновская установка работает только при закрытых дверях. При открывании двери аппарат автоматически выключается. Защита пульта управления рентгеновским аппаратом обеспечивается разделяющей стенкой, в которой имеется окно из свинцового стекла для наблюдения за больным.

У промышленных рентгеновских установок защита обслуживающего персонала обеспечивается так же, как при рентгенотерапии: путем дистанционного управления аппаратом из отдельного помещения.

Защита соседних помещений . Стены помещения, в котором установлена рентгеновская аппаратура, должны обеспечивать надежную защиту соседних помещений от рентгеновских лучей. Для защиты от прямого излучения на стены, потолок и пол наносится лучепоглощающий слой. Защита соседних помещений от рассеянного излучения необходима только при использовании рентгеновских аппаратов, работающих при анодном напряжении свыше 50 кв. Стены в кабинетах, где установлены рентгеновские аппараты, работающие при напряжении на аноде до 10 кв, покрываются лучепоглощающим слоем до высоты 2 л, а при напряжении свыше 100 кв - до потолка.

В рентгенодиагностических кабинетах кирпичные стены толщиной 12 см обеспечивают полную защиту соседних помещений, если источник излучения находится на расстоянии не менее 1,5 м от стен. Проекты новых рентгеновских кабинетов утверждаются государственными органами.

Принципы измерения дозы

Экспозиционную дозу можно измерять разными способами, с помощью дозиметров. Чувствительными элементами дозиметров могут быть фото-эмульсия, ионизационные камеры, счетчики, сцинтилляторы и полупроводники.

Принцип измерения с помощью фоточувствительной эмульсии . Под действием рентгеновских лучей фотографическая пленка чернеет. Степень почернения пленки зависит от полученной дозы. Графическая зависимость степени почернения пленки от величины дозы показана на рис. 5.2. Степень почернения пленки измеряется с помощью денситометра.


Рис. 5.2. Зависимость почернения эмульсии рентгеновской пленки от дозы

Пучок рентгеновского излучения содержит лучи с различной длиной волны, обладающие разной энергией. Почернение пленки зависит от энергии излучения. Поэтому при измерении дозы рентгеновского излучения необходимо пользоваться фильтрами, что позволяет помимо дозы определить и жесткость.

Принцип измерения дозы с помощью ионизационной камеры . Важной характеристикой рентгеновского излучения является его ионизирующая способность, которая может быть зарегистрирована с помощью ионизационных камер. Под действием рентгеновских лучей молекулы и атомы газов ионизируются. При этом возникают положительные и отрицательные ионы, которые под действием электрического поля перемещаются к отрицательному и положительному полюсам и тем самым создают ионизационный ток. Величина этого тока зависит от числа пар ионов, возникающих за единицу времени, от напряженности электрического поля, свойств ионизируемого газа и геометрических размеров камеры. Электрическое поле в камере создается с помощью заряженного плоского конденсатора, между обкладками которого располагается ионизационная камера. При увеличении напряжения на обкладках конденсатора до некоторого предела увеличивается ионизационный ток. При дальнейшем увеличении напряжения ионизационный ток уже не растет, а остается постоянным. Это значение ионизационного тока называется током насыщения. При измерении дозы на обкладки конденсатора подается напряжение насыщения. Таким образом, ионизационный ток зависит только от числа пар ионов, характеризующего интенсивность излучения.

Принцип измерения излучения с помощью газоразрядного счетчика . Счетчик представляет собой наполненную газом цилиндрическую стеклянную трубку. Катодом счетчика является металлический слой, нанесенный на внутреннюю поверхность. Анод представляет собой тонкую нить, натянутую вдоль оси цилиндра. К электродам счетчика подключается напряжение. Напротив анодного вывода имеется окно, через которое рентгеновские лучи проникают в трубку, по внешнему контуру течет ток. При попадании кванта излучения в трубку возникает импульс тока во внешней цепи. Эти импульсы подсчитываются специальным устройством.

Измерительные приборы

Фотодозиметр . Он служит для измерения интегральной дозы. Дозиметр представляет собой бакелитовый футляр, в качестве детектора используется рентгеновская пленка, покрытая различными фильтрами. Носят дозиметр в наружном верхнем кармане рабочего халата. Пленка вынимается из футляра раз в неделю или в месяц и проявляется. По степени почернения оценивается интегральная доза. Измерение дозы с помощью фотодозиметра дает на практике точность в пределах от 0,05 до 1,00 р.

При помощи менее чувствительных рентгеновских пленок можно измерять дозу вплоть до 20000 р. Преимуществами фотодозиметра являются малая стоимость, простота в обращении и при оценке результатов, малая чувствительность к механическим воздействиям и возможность сохранения пленок в качестве документов. Фотодозиметры нашли широкое применение для постоянной индивидуальной дозиметрии работающих в сфере излучения.


Рис. 5.3. Принципиальная схема конденсаторных ионизационных камер
1, 2. внутренний электрод; 3. янтарь; 4. полистирол

Ионизационные камеры конденсаторного типа (рис. 5.3) предназначены для измерения интегральной дозы. Они представляют собой шаровой или цилиндрический конденсатор с янтарной или полистирольной изоляцией, емкостью 5 - 10 см. Диэлектриком в этих конденсаторах служит воздух. Пределы измерения ионизационных камер составляют 100 - 200 мр. При тщательной изоляции камеры ток утечки настолько незначительный, что при зарядке конденсатора на напряжение 100 - 150 в потеря заряда за день не превышает 2%. Поскольку изменение заряда конденсатора под действием излучения пропорционально поглощенной дозе, то по остаточному напряжению конденсатора можно судить об интегральной дозе. Измерение интегральной дозы в этом случае сводится к измерению напряжения. В зависимости от способа измерения напряжения существуют два типа камер. В более простых камерах зарядка конденсатора и отсчет остаточного напряжения производятся с помощью отдельного устройства. Более сложные дозиметры состоят из ионизационной камеры, электрометра и микроскопа для отсчета (рис. 5.4).


Рис. 5.4, Принципиальная схема индивидуального дозиметра
1. рамка; 2. кварцевая нить; 3. шкала

Если вследствие ионизации заряд кварцевой нити (2) и рамки (1) уменьшается, то это влечет за собой перемещение кварцевой нити вдоль шкалы (3).

Такая конструкция отличается большой прочностью. Прибор хорошо выдерживает механические воздействия и мало чувствителен к изменениям окружающей среды.

Ионизационная камера «Mekapion» служит для измерения интегральной дозы. Чувствительным элементом (датчиком) ее является наперстковая ионизационная камера. Один электрод ионизационной камеры заряжен положительно, а другой, присоединенный к управляющей сети триода,- отрицательно. Под влиянием рентгеновского излучения заряд ионизационной камеры уменьшается, следовательно, уменьшается и напряжение, запирающее триод. Вследствие этого в лампе потечет анодный ток; реле, включенное в анодную цепь триода, сработает, сигнальная лампочка загорится, а счетчик одновременно зарегистрирует импульс. Одна вспышка сигнальной лампочки или же одно деление на счетчике соответствует дозе 2,5 р. Электрическая схема прибора показана на рис. 5.5. Прибор применяется при рентгенотерапии. Недостатком его является большая чувствительность к изменениям напряжения сети.

Универсальный дозиметр фирмы Сименс служит для измерения интегральной дозы и мощности экспозиционной дозы. Интегральную дозу измеряют в пределах от 200 до 1000 р, а мощность экспозиционной дозы 20 - 200 р/мин. Принципиальная схема прибора приведена на рис. 5.6 и 5.7. При измерении интегральной дозы (рис. 5.6) наружная обкладка конденсаторной ионизационной камеры заряжена положительно, а внутренняя обкладка (нить) соединена с конденсатором большой, емкости (С) и электрометром (емкостным вольтметром). Под действием рентгеновского излучения по ионизационной камере потечет ток, заряжающий конденсатор. Угол поворота подвижной части электрометра пропорционален заряду конденсатора. При измерении мощности экспозиционной дозы (рис. 5.7) внутренняя обкладка конденсаторной ионизационной камеры заземляется через большое сопротивление R. Ионизационный ток, протекающий по камере под действием рентгеновского излучения, создает падение напряжения на сопротивлении, в любой момент времени пропорциональное мощности экспозиционной дозы. Прибор применяется при наладке терапевтических рентгеновских аппаратов. Градуировка прибора производится с помощью радиоактивных препаратов с большим периодом полураспада.

Дозиметр типа FH 40H служит для измерения мощности экспозиционной дозы в пределах 0 - 1 р/час и 2 - 25 мр/час. Чувствительным элементом прибора является счетчик Гейгера - Мюллера. Принцип работы дозиметра: ток сетки электронной лампы, управляемой счетчиком, измеряется с помощью микроамперметра. При открытом счетчике течет максимальный сеточный ток, значит, полное отклонение микроамперметра соответствует исходному положению. Под действием излучения в лампе потечет анодной ток, следовательно, ток сетки уменьшится, что пропорционально импульсам излучения, полученным счетчиком за единицу времени. Преимущество данного прибора заключается в том, что он питается от батареи.

Дозиметр типа FH 40Т является транзисторным вариантом описанного выше прибора.



Понравилась статья? Поделитесь ей
Наверх