Что такое 1 кал см2. Актинометрические наблюдения. Расчет увеличения урожая для огурцов при искусственной досветке фитолампами ДНаТ

Страница 2 из 6

III. 1. ХАРАКТЕРИСТИКА СОЛНЕЧНОЙ РАДИАЦИИ
Солнечная радиация представляет собой поток идущего от Солнца электромагнитного излучения в широком диапазоне длин волн. В Международной системе единиц (СИ) длины волн оптического диапазона измеряются в микрометрах (мкм) или нанометрах (им), для которых существует соотношение: 1 мкм= 10 3 нм.
К верхней границе атмосферы на перпендикулярную к солнечным лучам поверхность поступает 1,98 кал/(см 2 мин) лучистой энергии (~ 140 тыс. лк). Эта величина радиационных условий и характеризует «солнечную постоянную».
Для количественной оценки солнечного излучения используют два показателя. Плотность потока (интенсивность) радиации - поток лучистой энергии, проходящей в единицу времени через перпендикулярную лучам единицу поверхности. Наиболее распространенными единицами измерения являются Вт/м 2 или кал/(см 2 мин). Сумма (доза) радиации - количество радиации, приходящей на единицу площади соответственно ориентированной поверхности за время действия облучения (час, день и т. д.). Измеряется она в кал/см 2 , ккал/см 2 , Дж/см 2 постояные множители для различных единиц измерения радиации приведены в работе .

В энергетическом отношении солнечная радиация почти полностью (на 99%) сосредоточена в области 290-4000 нм. ;)|и коротковолновая, или интегральная, радиация (ИР). Ра-/пьчцпя с длиной волн свыше 4000 нм относится к длинноволновой, или тепловой.
Для физиологических процессов растения наибольшее значите имеет коротковолновая радиация. Она подразделяется на ультрафиолетовую (290-380 нм), оказывающую фотоморфоге-ический эффект, видимую, или фотосинтетически активную радиацию (ФАР, 380-710 нм), дающую фотосинтетический, фотоморфогенетический и тепловой эффект, и близкую инфракрасную радиацию (750-4000 нм), дающую морфогенетический и тепловой эффект .
Величина ФАР может определяться либо путем непосредственного измерения с помощью фитопиранометров, либо рассчитываться на основе ИР с помощью переходных коэффициентов .
Нсли актинометрическая станция находится на расстоянии не более 50 км от опытного участка, можно пользоваться данными прихода суммарной ИР, полученной на станции, и переходить от них к суммарной ФАР. Суммарную приходящую ФАР вычисляют приближенно по формуле

2q* = 2qc, (in. 1)

где - дневная (месячная, годовая) сумма ИР (прямой и рассеянной); С - переходный коэффициент, равный 0,5.
Суммарная ИР может быть приближенно рассчитана по формуле :
Q = 49SU1 X 10-44-10,5(sinun)2,1, (Ш.2)

где S - продолжительность солнечного сияния за месяц; hu - полуденная высота Солнца на 15-е число месяца.

Определение месячных сумм радиации по этой формуле для территории от 35 до 65° с. ш. дает ошибку не более 10%.
Для оценки агроклиматических ресурсов по обеспеченности тершей ФАР могут быть использованы климатологические средние месячные суммы или карты сумм ФАР для районов Советского Союза .
Коротковолновая радиация подразделяется на следующие виды : S -прямая солнечная радиация; D - рассеянная радиация; Q - суммарная радиация, равная S + D; R - отраженная от поверхности земли или растений радиация; Вк = - (J R --остаточная коротковолновая радиация, или коротковолновый радиационный баланс. Все указанные виды радиации количественно оцениваются через плотности лучистого потока.
Следует отметить, что до последнего времени в подавляющей части работ фитофизиологического и экологического характера световые условия оценивались в единицах освещенности - люксах. Это имело место и в исследованиях с виноградом. Характеристика освещенности в люксах дает неполное представление об обеспеченности растений энергией солнечной радиации .
Для перехода от освещенности (в люксах) к энергетическим единицам используют пересчетные коэффициенты - энергетические эквиваленты люкса. В случае обратного пересчета пользуются световыми эквивалентами радиации. Для суммарной ИР световой эквивалент 1 кал/(см 2 мин) составляет 70 тыс. лк с пределами колебаний примерно ±5% . Световой эквивалент 0,1 кал/(см 2 мин) ФАР равен 20 тыс. лк . Энергетический эквивалент люкса для суммарной ФАР в безоблачную погоду для высот Солнца 11, 19 и 65° практически одинаков - 5,72хЮ_6 кал/(см 2 мин). При сплошной облачности 1 лк равен 3,88х10- 6 кал/(см 2 - мин) . По Цельникер , энергетический эквивалент люкса для ясной погоды при высоте Солнца 40-50° равен 5,70х10 6 кал/(см 2 - мин) для ФАР в границах 380-710 нм.

Необходимые приборы и принадлежности : термоэлектрический актинометр М-3, пиранометр универсальный М-80М, альбедометр походный, балансомер термоэлектрический М-10М, гелиограф универсальный модели ГУ–1, люксметр Ю-16.

Основным источником энергии, поступающей на Землю, является лучистая энергия, поступающая от Солнца. Поток электромагнитных волн, излучаемый Солнцем, принято называть солнечной радиацией. Эта радиация является практически единственным источником энергии для всех процессов, протекающих в атмосфере и на земной поверхности, в том числе и для всех процессов, происходящих в живых организмах.

Солнечная радиация обеспечивает растения энергией, которую они используют в процессе фотосинтеза для создания органического вещества, влияет на процессы роста и развития, на расположение и строение листьев, продолжительность вегетации и др. Количественно солнечную радиацию можно характеризовать потоком радиации.

Поток радиации – это количество лучистой энергии, которое поступает в единицу времени на единицу поверхности.

В системе единиц СИ поток радиации измеряется в ваттах на 1м 2 (Вт/м 2) или киловаттах на 1м 2 (кВт/м 2). Ранее она измерялась в калориях на 1 см 2 в минуту (кал/(см 2 ·мин)).

1кал/(см 2 ·мин) = 698 Вт/м 2 или 0.698 кВт/м 2

Плотность потока солнечной радиации на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S 0 . По международному соглашению 1981 г. S 0 = 1.37 кВт/м 2 (1.96 1кал/(см 2 ·мин)).

Если Солнце не в зените, то количество солнечной энергии, падающей на горизонтальную поверхность, будет меньше, чем на поверхность, расположенную перпендикулярно лучам Солнца. Это количество зависит от угла падения лучей на горизонтальную поверхность. Для определения количества тепла, получаемого горизонтальной поверхностью в минуту, служит формула:

S′ = S sinh ©

где S′ - количество тепла, получаемое в минуту горизонтальной поверхностью; S – количество тепла, получаемое перпендикулярной к лучу поверхностью; h © – угол, образованный солнечным лучом с горизонтальной поверхностью (угол h называется высотой солнца).

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. Ослабление потока солнечной радиации зависит от длины пути, проходимого лучом в атмосфере, и от прозрачности атмосферы на этом пути. Длина пути луча в атмосфере зависит от высоты солнца. При положении солнца в зените солнечные лучи проходят самый короткий путь. В этом случае масса атмосферы, проходимая солнечными лучами, т.е. масса вертикального столба воздуха с основанием 1 см 2 , принимается за одну условную единицу (m = 1). По мере опускания солнца к горизонту путь лучей в атмосфере увеличивается, а следовательно, увеличивается и число проходимых масс (m> 1). Когда солнце находится у горизонта, лучи проходят в атмосфере наибольший путь. Как показывают расчеты, при этом m в 34,4 раза больше, чем при положении Солнца в зените. Ослабление потока прямой солнечной радиации в атмосфере описывается формулой Буге. Коэффициент прозрачности p показывает, какая доля солнечной радиации, поступающей на верхнюю границу атмосферы, доходит до земной поверхности при m = 1.

S m = S 0 p m ,

где S m – поток прямой солнечной радиации, дошедший до Земли; S 0 – солнечная постоянная; p – коэффициент прозрачности; m – масса атмосферы.

Коэффициент прозрачности зависит от содержания в атмосферы водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одном и том же числе проходимых масс. Коэффициент прозрачности колеблется в пределах от 0,60 до 0,85.

Виды солнечной радиации

Прямая солнечная радиация (S′) – радиация, поступающая к земной поверхность непосредственно от Солнца в виде пучка параллельных лучей.

Прямая солнечная радиация зависит от высоты солнца над горизонтом, прозрачности воздуха, облачности, высоты места над уровнем моря и расстояния между Землей и Солнцем.

Рассеянная солнечная радиация (D) часть радиации, рассеянной земной атмосферой и облаками и поступающая на земную поверхность от небесного свода. Интенсивность рассеянной радиации зависит от высоты солнца над горизонтом, облачности, прозрачности воздуха, высоты места над уровнем моря, снежный покров. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счёт рассеивания и отражения падающей на них прямой и рассеянной радиации и повторного рассеивания их в атмосфере могут в несколько раз увеличить поток рассеянной радиации.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность.

Суммарная радиация (Q) – сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность:

До восхода, днем и после захода Солнца при сплошной облачности суммарная радиация поступает на землю полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации, в составе суммарной, быстро возрастает и в дневные часы поток многократно превышает поток рассеянной радиации.

Большая часть потока суммарной радиации, поступающего на земную поверхность, поглощается верхним слоем почвы, воды и растительностью. При этом лучистая энергия превращается в тепло, нагревая поглощающие слои. Остальная часть потока суммарной радиации отражается земной поверхностью, образуя отражённую радиацию (R). Почти весь поток отражённой радиации проходит атмосферу насквозь и уходит в мировое пространство, однако некоторая доля его рассеивается в атмосфере и частично возвращается на земную поверхность, усиливая рассеянную радиацию, а, следовательно, и суммарную радиацию.

Отражательная способность различных поверхностей называется альбедо . Оно представляет собой отношение потока отраженной радиации ко всему потоку суммарной радиации, падающему на данную поверхность:

Выражается альбедо в долях единицы или в процентах. Таким образом, земной поверхностью отражается часть потока суммарной радиации, равная QА, а поглощается и превращается в тепло – Q(1-А). Последняя величина называется поглощенной радиацией .

Альбедо различных поверхностей суши зависит главным образом от цвета и шероховатости этих поверхностей. Темные и шероховатые поверхности имеют меньшие альбедо, чем светлые и гладкие. Альбедо почв уменьшается с возрастанием влажности, так как цвет их при этом становится более темным. Значения альбедо для некоторых естественных поверхностей приведены в таблице 1.

Таблица 1 – Альбедо различных естественных поверхностей

Очень велика отражательная способность верхней поверхности облаков, особенно при большой их мощности. В среднем альбедо облаков около 50-60%, в отдельных случаях – более 80-85%.

Фотосинтетически активная радиация (ФАР) – часть потока суммарной радиации, которая может использоваться зелёными растения при фотосинтезе. Поток ФАР можно рассчитать по формуле:

ФАР = 0,43S′ + 0,57D,

где S′ - прямая солнечная радиация, поступающая на горизонтальную поверхность; D – рассеянная солнечная радиация.

Поток ФАР, падающий на лист, большей частью поглощается им, значительно меньшие доли этого потока отражаются поверхностью и пропускаются листом насквозь. Листья большинства древесных пород поглощают примерно 80%, отражают и пропускают до 10-12% от всего потока ФАР. Из поглощенной листьями части потока ФАР лишь несколько процентов лучистой энергии используется растениями непосредственно на фотосинтез и преобразуется в химическую энергию органических веществ, синтезированных листьями. Остальные, более 95% лучистой энергии, превращается в тепло и расходуется в основном на транспирацию, нагрев самих листьев и теплообмен их с окружающим воздухом.

Длинноволновое излучение Земли и атмосферы.

Радиационный баланс земной поверхности

Большая часть солнечной энергии, поступающей на Землю, поглощается её поверхностью и атмосферой, некоторая её часть излучается. Излучение земной поверхностью происходит круглосуточно.

Часть лучей, излучаемых земной поверхностью, поглощается атмосферой и таким образом способствует нагреванию атмосферы. Атмосфера в свою очередь посылает лучи обратно к поверхности земли, а также в космическое пространство. Это свойство атмосферы сохранять тепло, излучаемое земной поверхностью, называют оранжерейным эффектом . Разность между приходом тепла в виде встречного излучения атмосферы и расходом его в виде излучения деятельного слоя называется эффективным излучением деятельного слоя. Особенно большим эффективное излучение бывает ночью, когда потеря тепла земной поверхностью значительно превышает приток тепла, излучаемого атмосферой. Днём же, когда к излучению атмосферы добавляется суммарная солнечная радиация, получается избыток тепла, который идёт на нагревание почвы и воздуха, испарение воды и т.п.

Разность между поглощенной суммарной радиацией и эффективным излучением деятельного слоя называют радиационным балансом деятельного слоя.

Приходную часть радиационного баланса составляют прямая и рассеянная солнечная радиация, а также встречное излучение атмосферы. Расходную часть составляют отраженная солнечная радиация и длинноволновое излучение земной поверхности.

Радиационный баланс представляет собой фактический приход лучистой энергии на поверхность Земли, от которого зависит, будет происходить её нагревание или охлаждение.

Если приход лучистой энергии больше её расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то баланс отрицателен и поверхность охлаждается. Радиационный баланс земной поверхности является одним из основных климатообразующих факторов. Он зависит от высоты Солнца, продолжительности солнечного сияния, характера и состояния земной поверхности, замутнённости атмосферы, содержания в ней водяного пара, наличия облаков и др.

Приборы для измерения солнечной радиации

Термоэлектрический актинометр М-3 (Рис.3) предназначен для измерения интенсивности прямой солнечной радиации на перпендикулярную к лучам солнца поверхность.

Приемником актинометра является термобатарея из чередующихся пластинок манганина и константана, выполненная в виде звездочки. Внутренние спаи термобатареи через изоляционную прокладку подклеены к диску из серебряной фольги, обращённая к солнцу сторона диска зачернена. Внешние спаи через изоляционную прокладку подклеены к массивному медному кольцу. От нагрева радиацией оно защищено хромированным колпачком. Термобатарея расположена на дне металлической трубки, которая при измерениях направляется на солнце. Внутренняя поверхность трубки зачернена, и в трубке устроены 7 диафрагм (кольцеобразных сужений), чтобы предотвратить попадание рассеянной радиации на приемник актинометра.

Для наблюдений стрелку на основании прибора 11 (рис. 2) ориентируют на север и для облегчения слежения за солнцем устанавливают актинометр по широте места наблюдений (по сектору 9 и риске в верхней части стойки прибора 10 ). Наводка на солнце производится с помощью винта 3 и рукоятки 6 , расположенных в верхней части прибора. Винт позволяет поворачивать трубку в вертикальной плоскости, при вращении рукоятки обеспечивается ведение трубки за солнцем. Для точной наводки на Солнце в наружной диафрагме сделано небольшое отверстие. Против этого отверстия в нижней части прибора имеется белый экран 5 . При правильной установке прибора солнечный луч, проникающий через это отверстие должен дать светлое пятно (зайчик) в центре экрана.

Рис. 3 Актинометр термоэлектрический М-3: 1 – крышка; 2, 3 – винты; 4 – ось; 5 – экран; 6 – рукоятка; 7 – трубка; 8 – ось; 9 – сектор широт; 10 – стойка; 11 – основание.

Пиранометр универсальный М-80М (Рис. 4) предназначен для измерения суммарной (Q) и рассеянной (D) радиации. Зная их, можно вычислить интенсивность прямой солнечной радиации на горизонтальную поверхность S′. Пиранометр М-80М имеет устройство, для опрокидывания стойки прибора приемником вниз, что позволяет измерить интенсивность отражённой радиации и определить альбедо подстилающей поверхности.

Приёмником пиранометра 1 является термоэлектрическая батарея, устроенная в форме квадрата. Приёмная поверхность ее окрашена в чёрный и белый цвета в виде шахматной доски. Половина спаев термобатареи находится под белыми, другая половина – под черными клеточками. Сверху приёмник закрыт полусферическим стеклом для защиты от ветра и осадков. Для измерения интенсивности рассеянной радиации приемник затеняется специальным экраном 3 . Во время измерений приёмник прибора устанавливается строго горизонтально, для этого пиранометр снабжён круглым уровнем 7 и установочными винтами 4. В нижней части приёмника размещена стеклянная сушилка, заполненная водопоглощающим веществом, которая предотвращает конденсацию влаги на приёмнике и стекле. В нерабочем состоянии приёмник пиранометра закрывается металлическим колпаком.

Рис. 4 Пиранометр универсальный М–80М: 1 – головка пиранометра; 2 – стопорная пружина; 3 – шарнир затенителя; 4 – установочный винт; 5 – основание; 6 – шарнир откидного штатива; 7 – уровень; 8 – винт; 9 – стойка с осушителем внутри; 10 – приёмная поверхность термобатареи.

Альбедометр походный (рис. 5) предназначен для измерения интенсивностей суммарной, рассеянной и отражательной радиаций в полевых условиях. Приемником является головка пиранометра 1 , установленная на самоуравновешивающийся карданный подвес 3 . Этот подвес позволяет установить прибор в двух положениях – приемником вверх и вниз, причем горизонтальность приемников обеспечивается автоматически. При положении приемной поверхности прибора вверх определяется суммарная радиация Q. Затем для измерения отраженной радиации R рукоятку альбедометра поворачивают на 180 0 . Зная эти величины можно определить альбедо.

Балансомер термоэлектрический М-10М (рис. 6) предназначен для измерения полного радиационного баланса подстилающей поверхности. Приемником балансомера является термобатарея квадратной формы состоящая, из множества медных брусков 5 , обмотанных константановой лентой 10 . Половина каждого винта ленты гальваническим путем посеребрена, начало и конец серебряного слоя 9 являются термоспаями. Половина спаев подклеивается к верхней, другая половина – к нижней приемным поверхностям, в качестве которых используются медные пластинки 2 , окрашенные в черный цвет. Приемник балансомера помещен в круглую металлическую оправу 1 . При измерениях он располагается строго горизонтально с помощью специального накладного уровня. Для этого приемник балансомера крепится на шаровом шарнире 15 . Для повышения точности измерений приемник балансомера может защищаться от прямой солнечной радиации круглым экраном 12 . Интенсивность прямой солнечной радиации измеряется в этом случае актинометром или пиранометром.

Рис. 5 Альбедометр походный: 1 – головка пиранометра; 2 – трубка; 3 – карданный подвес; 4 – рукоятка

Рис. 6 Балансомер термоэлектрический М-10М: а) – схематическое поперечное сечение: б) – отдельная термобатарея; в) – внешний вид; 1 – оправа приемника; 2 – приемная пластинка; 3, 4 – спаи; 5 – медный брусок; 6, 7 – изоляция; 8 – термобатарея; 9 – серебряный слой; 10 – константановая лента; 11 – рукоятка; 12 – теневой экран; 13, 15 – шарниры; 14 – планка; 16 – винт; 17 - чехол

Приборы для измерения продолжительности солнечного

сияния и освещённости

Продолжительность солнечного сияния есть время, в течение которого прямая солнечная радиация равна или больше 0,1 кВт/м 2 . Выражается в часах за сутки.

Метод определения продолжительности солнечного сияния основан на регистрации времени, в течение которого интенсивность прямой солнечной радиации достаточна для получения прожога на специальной ленте, укреплённой в оптическом фокусе шаровой стеклянной линзы, и составляет не менее 0,1 кВт/м 2 .

Продолжительность солнечного сияния измеряется прибором гелиографом (рис. 7).

Гелиограф универсальный модели ГУ–1 (рис. 7). Основанием прибора является плоская металлическая плита с двумя стойками 1 . Между стойками на горизонтальной оси 2 укреплена подвижная часть прибора, состоящая из колонки 3 с лимбом 4 и нижним упором 7 , скобы 6 с чашкой 5 и верхним упором 15 и стеклянного шара 8 , который является сферической линзой. На одном конце горизонтальной оси закреплён сектор 9 со шкалой широт. При перемещении горизонтальной оси 2 прибора с запада на восток и повороте верхней части прибора вокруг неё, ось колонки 3 устанавливается параллельно оси вращения Земли (оси мира). Для закрепления установленного угла наклона оси колонки служит винт 11 .

Верхняя часть прибора может поворачиваться вокруг оси колонки 3 и фиксироваться в четырех определенных положениях. Для этого используется специальный штифт 12 , который вставляется через отверстие лимба 4 в одно из четырёх отверстий диска 13 , закреплённого на оси 2 . Совпадение отверстий лимба 4 и диска 13 определяется по совпадению меток А, Б, В и Г на лимбе 4 с индексом 14 на диске.

Рис. 7 Гелиограф универсальный модели ГУ–1.

1 – стойка; 2 – горизонтальная ось; 3 – колонка; 4 – лимб; 5 – чашка; 6 – скоба; 7 – упор; 8 – стеклянный шар; 9 – сектор; 10 – указатель широты; 11 – винт для закрепления угла наклона оси; 12 – штифт; 13 – диск; 14 – индекс на диске; 15 – верхний упор.

На метеорологической площадке гелиограф устанавливается на бетонном или деревянном столбе высотой 2 м, на верхней части которого закреплена площадка из досок толщиной не менее 50 мм, так, чтобы при любом положении Солнца относительно сторон горизонта отдельные постройки, деревья и случайные предметы не затеняли его. Он устанавливается строго горизонтально и ориентирован по географическому меридиану и широте метеорологической станции; ось гелиографа должна быть строго параллельна оси мира.

Шар гелиографа должен содержаться в чистоте, так как наличие пыли, следов осадков, отложение росы, инея, изморози и гололёда на шаре ослабляет и искажает прожог на ленте гелиографа.

В зависимости от возможной продолжительности солнечного сияния запись за одни сутки должна производиться на одной, двух или трёх лентах. В зависимости от сезона должны применяться прямые или изогнутые ленты, которые следует закладывать в верхний, средний или нижний пазы чашки. Ленты для закладки в течение месяца должны подбираться одного цвета.

Для удобства работы с гелиографом к югу от подставки (столба) с прибором устанавливается лесенка с площадкой. Лесенка не должна касаться столба и должна быть достаточно удобной.

Люксметр Ю-16 (рис. 8) применяется для измерения освещённости, создаваемой светом или искусственными источниками света.

Рис. 8 Люксметр Ю–16. 1 – фотоэлемент; 2 – провод; 3 – измеритель; 4 – поглотитель; 5 – клеммы; 6 – переключатель пределов измерения; 7 – корректор.

Прибор состоит из селенового фотоэлемента 1 , соединённого проводом 2 с измерителем 3 , и поглотителя 4 . Фотоэлемент заключён в пластмассовый корпус с металлической оправой, для увеличения пределов измерения в 100 раз на корпус надевается поглотитель из молочного стекла. Измерителем люксметра является магнитоэлектрический стрелочный прибор, смонтированный в пластмассовом корпусе с окном для шкалы. В нижней части корпуса находится корректор 7 для установки стрелки на нуль, в верхней части – клеммы 5 для присоединения проводов от фотоэлемента и ручки переключения пределов измерения 6 .

Шкала измерителя разбита на 50 делений и имеет 3 ряда цифр соответственно трём пределам измерения - до 25, 100 и 500 люкс (лк). При использовании поглотителя пределы увеличиваются до 2500, 10000 и 50000 лк.

Во время работы с люксметром необходимо тщательно следить за чистотой фотоэлемента и поглотителя, при загрязнении их протирают ваткой, смоченной в спирте.

Фотоэлемент при измерениях располагается горизонтально. Корректором устанавливают стрелку измерителя на нулевое деление. Присоединяют фотоэлемент к измерителю и через 4-5 с проводят измерения. Для уменьшения перегрузок начинают с большего предела измерений, затем переходят на меньшие пределы, пока стрелка не окажется в рабочей части шкалы. Отсчёт снимают в делениях шкалы. При малых отклонениях стрелки для повышения точности измерений рекомендуется переключить измеритель на меньший предел. Для предупреждения усталости селенового фотоэлемента через каждые 5-10 мин работы прибора необходимо затенять фотоэлемент на 3-5 мин.

Освещенность определяется умножением отсчёта на цену деления шкал и на поправочный коэффициент (для естественного света он равен 0.8, для ламп накаливания -1). Цена деления шкалы равна пределу измерения, делённому на 50. При использовании одного или двух поглотителей полученную величину умножают, соответственно, на 100 или 10000.

1 Ознакомиться с устройством термоэлектрических приборов (актинометр, пиранометр, альбедометр, балансомер).

2 Ознакомиться с устройством гелиографа универсального, со способами его установки в различное время года.

3 Ознакомиться с устройством люксметра, измерить в аудитории освещенность естественную и искусственную.

Записи оформить в тетрадь.

Приказ Министерства промышленности и энергетики РФ от 28 марта 2007 г. N 97
"Об утверждении Методических рекомендаций по определению технических требований к комплектам для защиты от воздействия электрической дуги"В целях обеспечения единства методических подходов к определению технических требований к комплектам для защиты от воздействия электрической дуги приказываю:1. Утвердить прилагаемые Методические рекомендации по определению технических требований к комплектам для защиты от воздействия электрической дуги.2. Признать утратившим силу приказ Минпромэнерго России от 21 октября 2004 г. N 128 "Об утверждении Методических рекомендаций по определению технических требований к комплектам для защиты от воздействия электрической дуги".3. Контроль за исполнением настоящего приказа возложить на заместителя министра Дементьева А.В.

Настоящие Методические рекомендации по определению технических требований к комплектам для защиты от воздействия электрической дуги (далее - Методические рекомендации) разработаны в соответствии с Трудовым кодексом Российской Федерации, Федеральным законом от 17 июля 1999 г. N 181-ФЗ "Об основах охраны труда в Российской Федерации", постановлением правительства Российской Федерации от 13 августа 1997 г. N 1013 "Об утверждении перечня товаров, подлежащих обязательной сертификации, и перечня работ, услуг, подлежащих обязательной сертификации" и постановлением Министерства труда и социального развития Российской Федерации от 26 апреля 2004 г. N 54 "О внесении изменений и дополнений в "Типовые отраслевые нормы бесплатной выдачи одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности" (далее-Типовые нормы).

I. Введение

Степень опасности для жизни и здоровья работников, занятых в условиях риска возникновения электрической дуги, чрезвычайно высока. В соответствии с действующим законодательством работодатель обязан обеспечить электротехнический персонал надежными средствами индивидуальной защиты, в том числе и от воздействия электрической дуги.Комплекты для защиты от воздействия электрической дуги предоставляют шанс на спасение жизни и сохранение здоровья, позволяют продлевать время эвакуации из опасной зоны.Методические рекомендации могут быть использованы при проектировании, изготовлении, эксплуатации и сертификации, а также при выборе и приобретении работодателями комплектов для защиты от воздействия электрической дуги.Соблюдение рекомендуемых требований к комплектам для защиты от воздействия электрической дуги позволит снизить вероятность несчастных случаев в организациях электроэнергетической промышленности, в том числе и со смертельным исходом, и не допустить (исключить) поставки некачественных средств индивидуальной защиты.

II. Классификация

По международной классификации комплекты для защиты от воздействия электрической дуги относятся к 3-му классу опасности (директива Совета ЕЭС 89/686/ЕЭС).При комплектовании средств индивидуальной защиты от воздействия электрической дуги (далее - комплекты) рекомендуется учитывать, что:- комплекты подбираются в соответствии с проведенной оценкой риска всех видов обслуживаемого оборудования;- комплекты обеспечивают защиту от выделяемой электрической дугой энергии в диапазоне до 100 кал/кв. см;- защитный уровень комплекта устанавливается не ниже максимально возможного уровня опасности на обслуживаемом оборудовании.Комплекты могут быть подразделены на уровни защиты в зависимости от параметров электрооборудования: I уровень - 5 кал/см 2 , II уровень - 20 кал/см 2 , III уровень - 40 кал/см 2 , IV уровень - 60 кал/см 2 , V уровень - 80 кал/см 2 , VI уровень - 100 кал/см 2 .Пример записи в технических условиях:- для комплекта: "Комплект для защиты от воздействия электрической дуги" (далее указываются тип, уровень защиты и модель изделия);- для костюма, входящего в комплект: "Костюм термостойкий для защиты от воздействия электрической дуги" (далее указываются модель изделия, наименование ткани и уровень защиты).

III. Общие требования

При приобретении и эксплуатации комплектов следует учитывать, что они являются средствами индивидуальной защиты (далее - СИЗ), которые:- обеспечивают комплексную защиту работника от вредных производственных факторов (общие загрязнения, пониженная и (или) повышенная температура, открытое пламя, электрическая дуга или сочетания этих факторов);- предназначены для выполнения работ в соответствии с перечнем профессий на протяжении рабочей смены как в закрытых помещениях, так и на открытой местности в летнее и зимнее время с учетом особенностей климатических поясов;- могут быть доукомплектованы защитой от проникновения клеща к телу пользователя при выполнении работ в районах возможного обитания энцефалитного клеща;- изготавливаются из материалов с постоянными термостойкими свойствами в мужском, женском, летнем и зимнем исполнении;- предусматривают термостойкую защиту головы, туловища, рук и ног пользователя;- имеют фурнитуру и детали отделки из химо-, термостойких материалов, защищенную от теплового воздействия слоями термостойкого материала.Защищая от воздействия высоких температур, комплект:- не наносит дополнительного вреда здоровью и жизни пользователя;- не выделяет едких газов и дымов;- не плавится, не воспламеняется и не поддерживает горение;- не оказывает токсического воздействия;- не вызывает аллергической реакции;- обеспечивает дополнительное время для ухода электротехнического персонала из опасной зоны и сводит к минимуму ожоги 2-й степени.Все входящие в состав комплекта изделия:- соответствуют действующим гигиеническим нормам;- сопровождаются сертификатами соответствия.

IV. Технические требования

В соответствии с требованиями действующего законодательства комплект подбирается в соответствии с характером опасности и условиями эксплуатации.Костюм, входящий в комплект, отвечает в части требований по:- огнестойкости и стойкости к воздействию конвективной теплоты и тепловому излучению - стандарту EN 531;- стойкости к тепловым факторам электрической дуги - международному стандарту IEC 61482-1;- защите от общих производственных загрязнений и пониженных температур - действующему законодательству.Материалы, из которых изготавливается костюм, входящий в комплект, отвечают следующим требованиям:- не обладают способностью самовоспламеняться, не поддерживают горение, не плавятся и не капают;- обеспечивают стойкость к воздействию конвективной и лучистой энергии, образованной электрической дугой;- сохраняют постоянство термостойких свойств на весь срок эксплуатации изделий;- стойки к сочетанию термических факторов риска;- не вызывают аллергии;- обеспечивают стойкость к вскрытию при воздействии электрической дуги. Примечание. Под вскрытием следует понимать разрыв защитного пакета, открывающий доступ к телу человека теплового потока и открытого пламени.Физико-механические свойства ткани верха костюма не должны быть хуже величин показателей, приведенных в таблице 1.Комплекты сохраняют свои защитные свойства и выдерживают не менее 50 стирок/химчисток на протяжении всего срока эксплуатации, определенного Типовыми отраслевыми нормами бесплатной выдачи одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности (далее - Типовые нормы).В соответствии с Типовыми нормами эксплуатационные свойства комплекта обеспечивают работу персонала в летнее и зимнее время года на протяжении рабочей смены. Ресурс работы комплекта - не менее двух лет.

V. Испытания комплектов

5.1. Комплекты в установленном порядке подвергаются испытаниям на соответствие физико-механическим, эксплуатационным, гигиеническим и защитным показателям, а также требованиям по эргономике костюма. Испытания комплектов для защиты от воздействия электрической дуги на соответствие международным стандартам EN 531 и IEC 61482-1 осуществляются в аккредитованных лабораториях по утвержденной программе испытаний.

Таблица 1. Физико-механические свойства ткани верха костюма

Наименование показателя

Величина, мин. значение

Поверхностная плотность, не более, г/м 2
Стойкость к истиранию, не менее, цикл
Воздухопроницаемость, дм 2 ·м 2 ·с, не менее
Гигроскопичность, не менее, %
Изменение линейных размеров после стирки, %, не более
Стойкость крашения в баллах (устойчивость окраски) к стирке, не менее
При подготовке образцов к испытаниям рекомендуется обращать внимание на следующее:- орган по сертификации в установленном порядке отбирает со склада комплект каждого типа защиты в количестве, обеспечивающем полноту проведения испытаний;- все изделия предварительно маркируются для их дальнейшей идентификации;- испытывается каждый тип комплектов, а также каждый пакет тканей, соответствующий комплектам;- пакеты тканей маркируются для их идентификации с комплектами;- количество пакетов определяется полнотой проведения испытаний;- пакеты тканей на испытания предоставляются вместе с соответствующим им типом костюма;- размеры пакетов (образцов), подвергающихся испытаниям, соответствуют требованиям стандартов на методы испытаний;- для целей испытаний проводится 5 или 50 циклов стирок, если производителем допускается как стирка, так и химическая чистка. Стирка осуществляется согласно требованиям стандарта ГОСТ Р ИСО 6330, метод 2А, сушат методом Е (барабанная сушка)Для подтверждения устойчивости защитных свойств проводят сравнительные испытания летних костюмов и соответствующих им пакетов ткани до и после 50 стирок. 5.2. Испытания образцов, не подвергшихся стиркам, осуществляются согласно требованиям действующего законодательства, в том числе на соответствие:- физико-механическим показателям в части определения линейных размеров и изменения линейных размеров после стирок, разрывных и раздирающих характеристик, стойкости к истиранию, гигроскопичности, воздухопроницаемости.Испытания на соответствие защитным показателям проводятся после 5 циклов стирки в части:- определения стойкости к открытому пламени, к воздействию конвективного тепла, лучистой теплоты - согласно требованиям международного стандарта EN 531;- стойкости к тепловым факторам электрической дуги - согласно требованиям международного стандарта IEC 61482-1.5.3. Испытания образцов костюмов и соответствующих им пакетов ткани, подвергшихся 50-кратной стирке, должны отвечать требованиям действующего законодательства, в том числе на соответствие:- физико-механическим показателям;- защитным показателям.Испытания образцов на соответствие защитным показателям рекомендуется проводить по тем же методикам, на том же оборудовании и с теми же заданными параметрами электрической дуги, которые изложены в п. 5.2. При этом защитные показатели комплектов, полученные в результате испытаний до и после 50 стирок, не могут быть ухудшены более чем на 5 %. Физико-механические показатели, полученные в результате испытания до и после 50 стирок, не могут ухудшаться более чем на 20 %. Для подтверждения стойкости конструкции комплекта после 50 стирок к факторам электрической дуги на соответствие требованиям международного стандарта IEC 61482-1 испытывается как минимум один летний комплект определенного типа.

VI. Эргономика

При разработке комплекта рекомендуется учитывать:- эргономические требования, обеспечивающие удобство носки при повседневном использовании и соответствие требованиям действующего в стране законодательства;- потребитель комплектов может проводить производственные испытания (опытные носки) сроком, не превышающим срок эксплуатации изделий, определенный Типовыми отраслевыми нормами.Порядок и срок проведения испытаний определяется типовой программой и методикой проведения производственных испытаний.

VII. Комплектность, маркировка

В комплект могут входить следующие составляющие:- костюм термостойкий для защиты от воздействия электрической дуги (в том числе защитное белье: хлопчатобумажное или термостойкое);- термостойкие СИЗ головы, включая диэлектрическую каску и лицевой щиток с термостойкой окантовкой;- термостойкие СИЗ рук;- термостойкие СИЗ ног.Возможна раздельная поставка изделий, но пользователь обязан иметь полный комплект.При раздельной поставке изделий пользователю рекомендуется эксплуатировать комплект при наличии всех его составляющих.При приобретении и эксплуатации комплектов следует обращать внимание на то, что:- маркировка комплектов соответствует требованиям действующего законодательства;- комплекты (или их составляющие) имеют руководство по эксплуатации;- все составляющие комплектов имеют сертификаты соответствия.

VIII. Упаковка, транспортирование и хранение

Упаковка, транспортирование и хранение изделий, входящих в комплект, осуществляется в соответствии с действующим законодательством. При приобретении и эксплуатации комплектов следует учитывать, что они формируются из моделей костюмов различного типа по уровню защиты. Комплекты могут быть дополнены иными СИЗ в соответствии с действующим стандартами, типовыми нормами.Термостойкий костюм, белье и термоустойчивая обувь должны соответствовать размеру пользователя. Комплектующие изделия, имеющие регулировку, тщательно подгоняются. Белье, входящее в комплект, изготавливается из огнестойких материалов, соответствующих требованиям стандарта EN 531, IEC 61482-1, а также документов в области стандартизации Российской Федерации, принятыми в установленном порядке.При проведении работ, связанных с риском возникновения электрической дуги, пользователь обеспечивается комплексной защитой. При этом костюм полностью застегивается. Шея, лоб, щеки, руки находятся в термостойких изделиях, а ноги - в термоустойчивой обуви. Щиток (экран) закреплен на каске и опущен.Правила эксплуатации комплектов указываются в технических условиях на продукцию.

X. Гарантия изготовителя

При эксплуатации комплектов рекомендуется обращать внимание на то, что:- изготовитель гарантирует соответствие защитных свойств комплектов требованиям и техническим условиям на продукцию на срок не менее двух лет со дня поставки при соблюдении потребителем условий транспортирования, хранения и эксплуатации, установленных в эксплуатационных документах;- поставщик комплектов гарантирует соответствие качества изделий при соблюдении потребителем правил эксплуатации, ухода и хранения в течение 12 месяцев от даты их поставки.

XI. Требования безопасности и экологии

В соответствии с действующим законодательством:- комплекты не должны быть источником опасных и вредных производственных факторов;- утилизация комплектов и (или) их составляющих не должна наносить вреда экологии окружающей среды.

УДК 621.365.2:62-786

РОССИЙСКОЕ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО

ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ "ЕЭС РОССИИ"

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫБОРУ КОМПЛЕКТОВ

ДЛЯ ЗАЩИТЫ ОТ ВОЗДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОЙ ДУГИ

РАЗРАБОТАНЫ: Департаментом технического аудита и генеральной инспекции ОАО РАО "ЕЭС России", Обществом с ограниченной ответственностью "Институт охраны труда и технического аудита" (ООО "Институт охраны труда и технического аудита"), ЗАО "ФПГ "Энергоконтракт".

ИСПОЛНИТЕЛИ: М.Ю. Львов, Ю.И. Жуков, Ю.И. Медведев, В.Т. Медведев, А.В. Каралюнец, А.М. Большунов, И.Б. Филиппова.

СОГЛАСОВАНЫ: Общественным объединением "Всероссийский Электропрофсоюз" (ОО "Всероссийский Электропрофсоюз").

УТВЕРЖДЕНЫ: Членом Правления, Техническим директором ОАО РАО "ЕЭС России" Б.Ф. Вайнзихером 08.10.2007.


Введение

Настоящие Методические указания разработаны для определения основных принципов выбора комплектов для защиты от воздействия электрической дуги в соответствии с положениями Межотраслевых правил по охране труда , Методических рекомендаций по определению технических требований к комплектам для защиты от воздействия электрической дуги , Инструкции по применению и испытанию средств защиты, используемых в электроустановках .

Данные средства защиты обязательны к применению:

В соответствии с Типовыми отраслевыми нормами бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности (далее - нормы)

Электромонтерам по обслуживанию электрооборудования электростанций;

Электромонтерам по ремонту и обслуживанию электрооборудования;

Электромонтерам оперативно-выездной бригады;

Электромонтерам по ремонту воздушных линий электропередачи;

Электромонтерам по обслуживанию подстанций;

Электромонтерам по эксплуатации распределительных сетей;

Электромонтерам по ремонту и монтажу кабельных линий;

Электромонтерам по ремонту оборудования распределительных устройств;

Электромонтерам главного щита управления электростанций;

Электромонтерам-линейщикам по монтажу воздушных линий высокого напряжения и контактной сети.

В соответствии с Правилами обеспечения работников специальной одеждой, специальной обувью и другими средствами индивидуальной защиты

Работникам, временно выполняющим работу по профессиям и должностям, предусмотренным нормами;

Бригадирам, мастерам, выполняющим обязанности бригадиров, помощникам и подручным рабочих, профессии которых предусмотрены в нормах;

Работникам, если они по занимаемой должности или профессии являются старшими и выполняют работы, которые дают право на получение СИЗ, предусмотренных нормами;

Рабочим, совмещающим профессии или постоянно выполняющим совмещаемые работы, в том числе и в комплексных бригадах, дополнительно выдаются СИЗ, предусмотренные нормами.

Требования настоящих Методических указаний к средствам индивидуальной защиты от термических рисков соответствуют Директиве Совета ЕЭС 89/686/ЕЭС . По международной классификации средства индивидуальной защиты от термических рисков электрической дуги относятся к третьему классу опасности.

1. Общие требования

1.1. Комплект должен обеспечивать комплексную термостойкую защиту работающего (туловища, головы, рук и ног).

Комплект должен соответствовать требованиям ГОСТ 12.4.011-89 в части классификации и общих требований к средствам защиты.

Состав комплекта определяется нормами и включает:

Костюм (летний/зимний, мужской/женский) для защиты от воздействия электрической дуги из ткани, выполненной из термостойких волокон с постоянными защитными свойствами;

Костюм летний (мужской/женский) для защиты от воздействия электрической дуги из ткани, выполненной из термостойких волокон с постоянными защитными свойствами, противоэнцефалитный;

Куртку-накидку (мужскую/женскую) для защиты от воздействия электрической дуги из ткани, выполненной из термостойких волокон с постоянными защитными свойствами;

Подшлемник термостойкий (летний/зимний);

Перчатки термостойкие;

Белье термостойкое (мужское/женское);

Белье хлопчатобумажное (мужское/женское),

Каску термостойкую с защитным экраном для лица с термостойкой окантовкой;

Обувь специальную для защиты от повышенных температур, механических воздействий на маслобензостойкой подошве (летнюю/зимнюю).

1.2. Все составляющие комплекта должны иметь документацию, подтверждающую их защитные свойства.

Костюм (летний/зимний, мужской/женский), куртка-накидка (мужская/женская), подшлемник термостойкий (летний/зимний), перчатки термостойкие, белье термостойкое должны иметь сертификаты соответствия со ссылкой на IEC (МЭК) 61482.1 и EN (EH ) 531 , технические условия производителя, протоколы испытаний, санитарно-эпидемиологическое заключение. Санитарно-эпидемиологическое заключение на зимнюю одежду должно иметь указание по ее применению в климатических регионах (поясах).

Белье хлопчатобумажное (мужское/женское), должно иметь сертификат соответствия со ссылкой на ГОСТ 20462-87 , ГОСТ 904-87 , санитарно-эпидемиологическое заключение.

Белье термостойкое (мужское/женское) должно иметь сертификат соответствия со ссылкой на IEC (МЭК) 61482.1 и EN (EH ) 531, ГОСТ 20462-87, ГОСТ 904-87, техническую документацию производителя, протоколы испытаний, санитарно-эпидемиологическое заключение.

Каска термостойкая с защитным экраном для лица и термостойкой окантовкой должна иметь сертификат соответствия со ссылкой на ГОСТ 12.4 207-99 (каска) , ГОСТ 12.4.023-84 (экран) , санитарно-эпидемиологическое заключение.

Обувь специальная должна иметь сертификат соответствия со ссылкой на ГОСТ 12.4.032-77 , ГОСТ 12.4.137-84 , ГОСТ 28507-90 , техническую документацию производителя, а также санитарно-эпидемиологическое заключение.

1.3. Одежда, входящая в состав комплекта, должна обеспечивать разноуровневую защиту в соответствии со следующей градацией:

1 уровень - 5 кал/см 2 ;

2 уровень - 20 кал/см 2 ;

3 уровень - 40 кал/см 2 ;

4 уровень - 60 кал/см 2 ;

5 уровень - 80 кал/см 2 ;

6 уровень -100 кал/см 2 .

Уровень защиты каждого костюма (комплекта) определяется на основании результатов испытаний по стандарту IEC (МЭК) 61482.1 и указывается в соответствующих протоколах испытаний на костюм (комплект).

1.4. Комплекты должны подбираться в зависимости от вида обслуживаемой электроустановки.

В целях прогнозирования уровня опасности проводится "оценка риска" конкретного обслуживаемого электрооборудования на основании следующих параметров: вид распредустройства, сила тока, время воздействия дуги, напряжение, расстояние между электродами, расстояние до источника дуги.

Расчет может быть проведен в соответствии с руководством IEEE 1584-2002 .

В соответствии с результатом расчета вероятной величины энергии падающего теплового потока, генерируемого электрической дугой, для конкретной электроустановки осуществляется подбор комплекта соответствующего уровня защиты.

1.5. Одежда и трикотажные изделия, входящие в комплект, должны изготавливаться из материалов, выполненных из термостойких волокон с постоянными защитными свойствами, сохранять защитные свойства на протяжении всего срока эксплуатации и выдерживать не менее 50 стирок.

Постоянство защитных свойств подтверждается проведением сравнительных испытаний пакетов тканей, соответствующих каждому типу летних костюмов, до и после проведения 50-кратных стирок по стандарту IEC (МЭК) 61482.1.

1.6. Ресурс работы одежды и изделий из термостойких материалов определяется нормами и должен быть не менее двух лет. Поэтому ткани, из которых они изготовлены, должны обеспечивать стойкость к механическим повреждениям, иметь высокие прочностные характеристики и сохранность внешнего вида после стирок. Физико-механические показатели ткани верха должны соответствовать следующим величинам:

Изменение линейных размеров после мокрой обработки не более 2,5 %.

1.7. Костюмы для защиты от воздействия электрической дуги используют в качестве спецодежды для повседневной носки в течение рабочей смены, поэтому они должны быть легкие, удобные и гигиеничные. Поверхностная плотность материалов костюма должна быть не более 250 г/м 2 . Вес летнего костюма размера 52-54 роста 170-176 см - не более 1,5 кг, вес костюма того же размера, защищающего от пониженных температур, не должен превышать 5 кг. Для материалов летнего костюма воздухопроницаемость - не менее 30 дм 3 /м 2 с, гигроскопичность - не менее 7%.

Физико-механические показатели, полученные в результате сравнительных испытаний пакетов тканей, соответствующих каждому типу летних костюмов, до и после 50 стирок не должны снижаться более чем на 20 %, что должно подтверждаться протоколами испытаний.

1.8. Комплекты в соответствии с перечнем профессий должны обеспечивать работу на протяжении рабочей смены в летнее и зимнее время года в различных климатических районах Российской Федерации.

2. Требования к одежде

2.1. Конструкция костюмов должна обеспечивать потребителю максимально возможную степень комфорта, согласующуюся с прочностью и эффективностью по защитным характеристикам, а также простое и правильное надевание/снятие.

Костюмы должны изготавливаться в соответствии с техническими условиями, утвержденными Департаментом технического аудита и генеральной инспекции КЦ и согласованными с ОО "Всероссийский Электропрофсоюз".

Конструкция комплекта не должна создавать дополнительного притока воздуха к телу пользователя.

Допускается объединять несколько размерных интервалов и изготавливать одежду других размеров по согласованию с потребителем и в соответствии с нормативными документами.

При выполнении персоналом работ в районах возможного обитания энцефалитного клеща, летний костюм должен быть изготовлен с учетом защиты от проникновения клеща к телу пользователя.

Фурнитура комплекта и детали его отделки должны быть химо-термостойкими или защищенными от термического воздействия слоями термостойкого материала.

Застежки должны легко расстегиваться для обеспечения быстрого удаления одежды при аварийной ситуации.

Определение теплоизоляции зимнего костюма по ГОСТ Р 12.4.185-99 подтверждается протоколами испытаний.

Гарантийный срок хранения должен быть не менее 5 лет.

Одежда должна быть ремонтопригодной. Каждый костюм должен сопровождаться комплектом для мелкого ремонта.

2.2. Требование к конструкции термостойких трикотажных изделий: белью, подшлемникам, перчаткам, входящих в комплект.

2.2.1. Конструкции термостойкого белья должны базироваться на моделях мужского и женского белья из трикотажного полотна и соответствовать ГОСТ 20462, ГОСТ 904 и техническим условиям. Термостойкое белье может быть утепленным.

2.2.2. Подшлемник термостойкий должен изготавливаться по технической документации в летнем и зимнем вариантах.

2.2.3. Конструкция подшлемника должна закрывать лоб и шею для защиты от ожогов в случае возникновения термического воздействия.

2.2.4. Перчатки термостойкие должны изготавливаться из термостойких нитей, пятипалые, с напульсником и соответствовать ГОСТ 5007-87 и технической документации.

3. Требования к каске с защитным экраном для лица

Каска должна изготавливаться из диэлектрических материалов, стойких к повышенным температурам.

Механическая прочность каски должна сохраняться при пониженных температурах до минус 50 °С.

Щиток (экран) защитный для лица должен обязательно иметь негорючую окантовку, что позволяет уменьшить деформацию щитка при термическом воздействии.

4. Требования к обуви

Обувь должна защищать от механических повреждений, повышенных температур, кислот, щелочей, нетоксичной и взрывоопасной пыли в летний и зимний периоды года. Зимняя обувь должна изготавливаться с учетом применения в различных климатических поясах.

При термическом воздействии:

Верх и подошва обуви должны быть негорючими;

Швы обуви не должны вскрываться;

Подошва не должна отклеиваться, расслаиваться, плавиться и должна выдерживать повышенные температуры до 300 °С;

Конструкция обуви в целом должна сохранять форму.

5. Требования по эксплуатации

Эксплуатация и хранение комплектов должна осуществляться в соответствии с требованиями изготовителей.

Термостойкие костюмы, белье, подшлемники и обувь, являясь средствами индивидуальной защиты, закрепляются за конкретными работниками в соответствии с размером и ростом. Применяемая для дополнительной защиты и используемая на период переключений куртка-накидка может быть дежурной.

Комплект должен подбираться работнику с учетом показателей оценки риска на рабочем месте.

Комплектующие, имеющие регулировку, должны быть тщательно подогнаны.

Во время выполнения работ костюм должен быть полностью застегнут, шея, лоб, руки должны быть дополнительно защищены термостойкими изделиями (перчатками, подшлемником), щиток (экран), закрепленный на каске, должен быть опущен, ноги должна защищать термоустойчивая обувь.

Для обеспечения безопасной работы все изделия, входящие в состав комплекта, не должны иметь загрязнений, снижающих их защитные свойства.

6. Требования к маркировке

Маркировка должна соответствовать ГОСТ 12.4.115-82 , ГОСТ Р 12.4.218-99 и содержать основные сведения:

Наименование, товарный знак изготовителя и его местонахождение;

Размер, рост;

Тип комплекта, модель защитного костюма;

Сведения о защитных свойствах с указанием наименования и величины опасного или вредного производственного фактора,

Сведения об уходе за изделием.

Маркировка наносится на ярлыки и ее изображение должно быть стойким. Обозначение защитных свойств по ГОСТ 12.4.103-83 .

Допускается нанесение на изделия пиктограмм в соответствии с ГОСТ Р 12.4.218-99.

Руководство (инструкция) по эксплуатации должно прикладываться к каждому комплекту и должно содержать информацию об уровнях защиты костюмов (комплектов), условиях эксплуатации, о правилах ухода и ремонта за изделиями, о системе маркировки.

Требования по выбору комплектов, защищающих от электрической дуги, приведены в табличной форме в Приложении 1.

7. Оценка эргономики комплектов

Оценка эргономики комплектов, впервые поставляемых на промышленные предприятия, должна проводиться в соответствии с Программой и методикой производственных испытаний (опытных носок) в Приложении 2.

Соответствие требований эргономики оцениваются по результатам производственных испытаний (опытных носок) комплектов сроком не менее 12 месяцев.

Данные испытания проходят сертифицированные изделия, имеющие перечисленные выше заключения по защитным свойствам.

В ходе испытаний оценивается легкость и удобство конструкции с учетом возможных движений и поз, принимаемых в процессе работы, отсутствие выступающих частей и жестких швов на деталях комплекта, которые могут вызвать раздражение кожи или травму при контакте с телом работника.

Комплекты считаются успешно прошедшими испытания при условии их соответствия всем требованиям, указанным в разделах методических указаний 1-6.

По результатам производственных испытаний выдается Акт о результатах проведения производственных испытаний с заключением о возможности/невозможности применения комплектов на промышленных предприятиях.

8. Список литературы

1. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001 (Постановление Минтруда РФ от 05.01.2001г. № 3).

3. Инструкция по применению и испытанию средств защиты, используемых в электроустановках (Приказ Минэнерго России от 30.06.2003 г. № 261).

4. Типовые нормы бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам организаций электроэнергетической промышленности, утвержденные Постановлением Министерства труда и социального развития Российской Федерации от 26 апреля 2004 г. № 54.

5. Правила обеспечения работников специальной одеждой, специальной обувью и другими средствами индивидуальной защиты (Постановление Минтруда РФ от 18.12.1998 г. № 51).

6. Директива Совета ЕЭС от 21 декабря 1989 г. в области сертификации средств индивидуальной защиты (89/686/ЕЭС).

7. IEC (МЭК) 61482.1 Международный стандарт. Работа под током. Огнестойкие материалы для изготовления одежды для теплозащиты рабочих. Тепловые факторы риска электрической дуги. Методы испытаний.

8. EN (EH ) 531 Европейский стандарт. Защитная одежда для работников промышленности, подвергшихся тепловому воздействию (за исключением одежды для пожарных и сварщиков).

9. IEEE 1584-2002 Руководство Института инженеров по электротехнике и электронике по методике расчета опасных факторов электрической дуги.

10. ГОСТ 12.4.011-89 (СТ СЭВ1086-88) ССБТ. Средства защиты работающих. Общие требования и классификация.

11. ГОСТ 20462-87 Изделия трикотажные бельевые для мужчин и мальчиков. Общие технические условия.

12. ГОСТ 904-87 Изделия трикотажные бельевые для женщин и девочек. Общие технические условия.

13. ГОСТ 12.4.207-99 ССБТ. Каски защитные. Общие технические требования. Методы испытаний.

14. ГОСТ 12.4.023-84 ССБТ. Щитки защитные лицевые. Общие технические требования и методы контроля.

15. ГОСТ 12.4.032-77 Обувь специальная кожаная для защиты от повышенных температур. Технические условия.

16. ГОСТ 12.4.137-84 Обувь специальная кожаная для защиты от нефти, нефтепродуктов, щелочей, нетоксичной и взрывоопасной пыли. Технические условия.

17. ГОСТ 28507-90 Обувь специальная кожаная для защиты от механических воздействий. Общие технические условия.

18. ГОСТ Р 12.4.185-99 ССБТ. Средства индивидуальной защиты от пониженных температур. Методы определения теплоизоляции комплекта.

19. ГОСТ 5007-87 Изделия трикотажные перчаточные. Общие технические условия.

20. ГОСТ 12.4.115-82 ССБТ. Средства индивидуальной защиты работающих. Общие требования к маркировке.

21. ГОСТ Р 12.4.218-99 ССБТ. Одежда специальная. Общие технические требования.

22. ГОСТ 12.4.103-83 Система стандартов безопасности труда. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация.

ПРИЛОЖЕНИЕ 1

СВОДНАЯ ТАБЛИЦА ТРЕБОВАНИЙ, ПРЕДЪЯВЛЯЕМЫХ ПРИ ВЫБОРЕ КОМПЛЕКТОВ, ЗАЩИЩАЮЩИХ ОТ ВОЗДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОЙ ДУГИ

п/ п

Требования

Подтверждение соответствия требованиям

Комплекты должны обеспечивать комплексную защиту работников. Состав комплекта определяется в соответствии с Постановлением Министерства труда и социального развития РФ от 26.04.04 г. №54 п.п.31, 32, 42, 43, 44, 55, 56, 59 и может включать в себя:

Наличие у работника термостойких СИЗ тела, головы, рук и ног.

1.1.

Костюм летний изготовлен из ткани, выполненной из термостойких волокон с постоянными защитными свойствами (типа Номекс®), мужской и женский.

Наличие сертификата соответствия со ссыпкой на IEC (МЭК) 61482.1 и EN (EH ) 531;

Наличие образца изделия.

1.2.

Костюм летний противоэнцефалитный изготовлен из ткани, выполненной из термостойких волокон с постоянными защитными свойствами (типа Номекс®), мужской и женский. (В регионах обитания энцефалитного клеща костюм летний должен быть заменен на костюм летний противоэнцефалитный.)

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.3.

Костюм зимний изготовлен из ткани, выполненной из термостойких волокон с постоянными защитными свойствами (типа Номекс®), для II и III климатических поясов, мужской и женский.

Наличие сертификата соответствия со ссылкой на IE С (МЭК) 61482.1 и EN (EH ) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.4.

Костюм зимний изготовлен из ткани, выполненной из термостойких волокон с постоянными защитными свойствами (типа Номекс®), для IV и особого климатических поясов, мужской и женский.

Наличие сертификата соответствия со ссылкой на IEC (МЭК) 61482.1 и EN (EH ) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.5.

Куртка-накидка изготовлена из ткани, выполненной из термостойких волокон с постоянными защитными свойствами (типа Номекс®).

Наличие сертификата соответствия со ссылкой на IE С (МЭК) 61482.1 и EN (EH )531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.6.

Перчатки термостойкие.

Наличие сертификата соответствия со ссылкой на ГОСТ 5007-87, IE С (МЭК) 61482.1 и EN (EH ) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.7.

Подшлемник термостойкий летний.

Наличие сертификата соответствия со ссылкой на IE С (МЭК) 61482.1 и EN (EH ) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.8.

Подшлемник термостойкий зимний.

Наличие сертификата соответствия со ссылкой на IE С (МЭК) 61482.1 и EN (EH ) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.9.

Каска термостойкая с защитным экраном для лица с термостойкой окантовкой.

Наличие сертификата соответствия со ссылкой на ГОСТ Р 12.4.207-99 (каска) и с указанием эксплуатации каски до минус 50 °С, ГОСТ 12.4.023-84 (экран);

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.10

Белье хлопчатобумажное, мужское и женское.

Наличие сертификата соответствия со ссылкой на ГОСТ 20462-87, ГОСТ 904-87;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.11.

Белье термостойкое, мужское и женское.

Наличие сертификата соответствия со ссылкой на ГОСТ 20462-87, ГОСТ 904-87, IE С (МЭК) 61482.1 и EN (ЕН) 531;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия.

1.12.

Обувь (ботинки, полуботинки, полусапоги или сапоги) кожаная летняя и зимняя для защиты от повышенных температур, на маслобензостойкой подошве.

Наличие сертификата соответствия со ссылкой на ГОСТ 12.4.032-77, ГОСТ 12.4.137-84, ГОСТ 28507-90;

Наличие санитарно-эпидемиологического заключения;

Наличие образца изделия (полупара).

Подбор защитных комплектов осуществляется на основании проведения расчета оценки риска обслуживаемого оборудования, учитывая такие факторы как:

Вид распредустройства (ОРУ, ЗРУ);

Сила тока (кА);

Время воздействия дуги (сек);

Напряжение (кВ);

Расстояние между электродами (см);

Расстояние до источника дуги (м).

Таблицы сделанного по методике IE ЕЕ 1584-2002 расчета оценки риска, существующего при обслуживании заказчиком конкретных электроустановок.

Обеспечение разноуровневой защиты.

Комплекты должны обеспечивать защиту от тепловых факторов электрической дуги в диапазоне до 100 кал/см 2 .

Уровень защиты выбирается в соответствии с проведенной оценкой риска.

Уровни защиты:

I уровень - 5 кал/см 2 ;

II уровень - 20,0 кал/см 2 ;

III уровень - 40,0 кал/см 2 ;

IV уровень - 60,0 кал/см 2 ;

V уровень - 80,0 кал/см 2 ;

VI уровень - 100,0 кал/см 2 .

Необходимо предоставить:

Протоколы испытаний по методике IE С (МЭК) 61482.1 по каждому комплекту в соответствии с уровнем защиты (после проведения 5 и 50 стирок);

Образцы комплектов, обеспечивающие каждый из требуемых уровней защиты, с указанием фактического уровня защиты комплекта.

Постоянство защитных свойств костюмов (ткани) в течение всего срока эксплуатации (2 года).

Значение электродугового термического воздействия одного и того же пакета ткани до и после 50-ти кратных стирок не должно снижаться больше чем на 5 %.

Оценивается посредством сравнительного анализа протоколов испытаний по стандарту IE С(МЭК) 61482.1:

Протоколы испытаний пакета материалов (для летнего костюма) и ткани верха (для зимнего костюма) после 5 и 50 стирок.

Физико-механические характеристики ткани верха:

Поверхностная плотность ткани не более 250 г/м 2 ;

Стойкость к истиранию не менее 4000 циклов;

Разрывные нагрузки не менее 800 Н;

Воздухопроницаемость, дм 3 /м 2 с, не менее 30;

Гигроскопичность, не менее 7 %;

Усадка ткани после стирки не должна превышать: по основе -2,5 %, по утку - 2,5 %;

Величина показателей ткани верха до и после 50-кратных стирок не должна ухудшаться более чем на 20%.

Оценка потребительских свойств проводится посредством сравнительного анализа протоколов испытаний физико-механических характеристик ткани верха:

Протоколы испытаний ткани верха (после 5 стирок);

Протоколы испытаний ткани верха после проведения 50 стирок совместно с протоколами о проведении стирок (протоколы о проведении химических чисток не рассматриваются).

Защитные комплекты должны соответствовать требованиям эргономики и эстетики:

Общий вес не должен превышать:

Для летних костюмов - 1,5 кг;

Для зимних костюмов - 5 кг.

Вес определяется взвешиванием образцов продукции.

Комплекты должны быть удобны в носке в течение рабочей смены.

Отзывы и заключения заказчиков, использовавших данную продукцию, или акты (заключения) о проведении опытной носки.

Маркировка костюмов соответствует ГОСТ Р 12.4.218-99, ГОСТР 12.4.115-82 и EN (EH ) 531

Оцениваются образцы предлагаемых к поставке изделий.

Размер изделий указывается в соответствии с ГОСТ Р 12.4.218-99.

Оцениваются образцы предлагаемых к поставке изделий.

Наличие инструкции по эксплуатации по ГОСТ Р 12.4.218-99.

Инструкция по эксплуатации, оформленная в соответствии с ГОСТ Р 12.4.218-99.

Комплекты должны быть ремонтопригодными.

Предоставляется информация о ремонтопригодности изделия. К каждому комплекту должны прилагаться ремкомплекты.

ПРИЛОЖЕНИЕ 2

ТИПОВАЯ ПРОГРАММА И МЕТОДИКА ПРОИЗВОДСТВЕННЫХ ИСПЫТАНИЙ КОМПЛЕКТОВ ДЛЯ ЗАЩИТЫ ОТ ВОЗДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОЙ ДУГИ

1. Область применения

Настоящая типовая программа и методика производственных испытаний устанавливает программу и методику проведения производственных испытаний (далее - испытания) комплектов для защиты от воздействия электрической дуги, впервые поставляемых на энергопредприятия.

2. Назначение

Настоящая типовая программа и методика производственных испытаний (далее - программа и методика испытаний) предназначена для оценки соответствия заявленной на испытания продукции требованиям Методических указаний и технических условий на комплекты.

3. Порядок проведения и оформления испытаний

3.1. Производственные испытания проводятся комиссией, в состав которой входят: технические руководители энергопредприятий, представители служб охраны труда и технической инспекции. В комиссию целесообразно привлекать представителей профсоюза, государственных надзорных органов и независимых экспертов.

3.2. Комиссия в соответствии с требованиями настоящего стандарта определяет место поведения испытаний (предприятие), ответственное лицо за проведение испытаний, перечень профессий, тип комплекта, соответствующий условиям работы в электроустановках, их количество и продолжительность проведения испытаний, но не менее 12 месяцев.

3.3. Испытания по оценке эргономики каждого вида комплектов проводятся как в закрытом помещении, так и на улице при воздействии внешних факторов, обусловленных климатом местности в период проведения испытаний, а также при воздействии вредных производственных факторов, в том числе и при выполнении плановых ежедневных переключений и ремонтных работ.

3.4. После проведения производственных испытаний составляется Акт о результатах проведения производственных испытаний комплектов для защиты от воздействия электрической дуги. В Акте должна быть указана информация:

О составе комиссии;

О наименовании предприятия, проводящего испытания и сроках их проведения;

О наименовании изготовителя и поставщика с реквизитами;

О перечне профессий и условиях работы;

О полноте представленной документации;

О комплектности поставки;

О наименовании каждого вида средств индивидуальной защиты (СИЗ), представленного на испытания;

Об изменении эргономических и потребительских характеристик.

В заключении Акт должен содержать заключение комиссии с выводами и рекомендациями:

О соответствии/несоответствии представленных образцов требованиям заказчика;

Рекомендации к использованию/отказу в применении данного комплекта на промышленных предприятиях ОАО РАО "ЕЭС России" в качестве комплексных средств индивидуальной защиты от воздействия электрической дуги;

Если за период испытаний в процессе эксплуатации костюм потерял свой внешний вид (наличие механических повреждений, превышение допустимого процента усадки ткани, потеря цветоустойчивости и т.п.), то он считается не прошедшим опытную эксплуатацию и не допускается к использованию.

Комплект считается прошедшим испытания, если он соответствует всем требованиям эргономики.

3.5. Программа испытаний утверждаются председателем комиссии. Акт подписывается председателем и всеми членами комиссии.

4. Программа испытаний

4.1. Проведение экспертизы технической документации.

4.2. Проведение экспертизы испытываемого комплекта на соответствие представленной технической документации.

4.3. Проведение испытаний по оценке эргономических и потребительских свойств комплекта.

4.4. Оценка сохранности эргономических и потребительских свойств после стирок. В Акт заносятся результаты визуальной и органолептической оценки изделий.

5. Методика испытаний

5.1. Проведение экспертизы технической документации.

Представленная документация должна соответствовать объекту экспертизы, для чего проводится их идентификация. Проведение экспертизы нормативной документации заключается в установлении комплектности, полноты достоверности и правильности представленной документации, а также в формировании замечаний и предложений по результатам рассмотрения представленной технической документации.

Для проведения экспертизы технической документации необходимо предъявить: технические условия или техническое описание, протоколы испытаний на стойкость к тепловым факторам электрической дуги до и после 50-ти кратных стирок, руководство по эксплуатации и уходу, санитарно-эпидемиологические заключения и сертификаты в системе ГОСТ Р на продукцию, входящую в состав комплекта. В сертификатах соответствия и протоколах испытаний на термостойкую продукцию должна быть ссылка на стандарты IEC (МЭК) 61482.1 и EN (ЕН) 531. Технические условия должны иметь разделы: технические требования, правила приемки, методы контроля, указания по эксплуатации и гарантии изготовителя.

сти так называемой идеальной атмосферы, т. е. атмосферы, не со­ держащей водяных паров и взвешенных аэрозольных частиц. Фак­ тор мутности Т рассчитывается по формуле

где Pi - коэффициент прозрачности идеальной атмосферы

В качестве единицы измерения радиации на сети Росгидроме­ та используют киловатт на квадратный метр (кВт/м2). Суммы ра­ диации выражают в мегаджоулях на квадратный метр (МДж/м2). В таблицах, справочниках, монографиях значения радиации и её сумм могут быть представлены в других единицах. Для возможно­ сти сравнения значений, выраженных в различных единицах, сле­ дует использовать соотношения:

Срочные актинометрические наблюдения предусматривают выполнение измерений вручную в установленные сроки при по­ мощи актинометрических датчиков с показывающими измери­ тельными приборами характеристик солнечного излучения и оп­ ределение дополнительных характеристик условий наблюдений. По результатам срочных наблюдений определяют значения видов радиации и коэффициент прозрачности атмосферы в момент на­ блюдения, а также месячные суммы этих видов радиации.

Комплекс характеристик солнечного излучения (составляю­ щих радиационного баланса) включает прямую солнечную радиа­ цию, рассеянную радиацию, суммарную радиацию, отражённую коротковолновую радиацию, коротковолновое альбедо подсти­ лающей поверхности, радиационный баланс, баланс коротковол­ новой радиации, баланс длинноволновой радиации.

Комплекс характеристик состояния атмосферы и земной по­ верхности включает количество и форму облаков, цвет неба, со­ стояние диска Солнца, метеорологическую дальность видимости, состояние подстилающей поверхности, температуру воздуха, пар­ циальное давление водяного пара, температуру поверхности почвы.

При срочных наблюдениях погрешность AJ определения пря­ мой солнечной, рассеянной, суммарной, отражённой радиации и радиационного баланса вычисляется по формуле и округляется до

0,01 кВт/м2:

где J - измеренное значение радиации (кВт/м2), енты, значения которых указаны в таблице.

Ъ и с - коэффици­

Вид радиации и её обозначение

Прямая солнечная радиация S

Рассеянная радиация D

Суммарная радиация Q

Отражённая радиация R

Радиационный баланс В

Погрешность ЛР2 определения коэффициента прозрачности атмосферы Р 2 при высоте Солнца более 17° не превышает 0,02.

Погрешность определения характеристик дополнительной информации при выполнении актинометрических наблюдений: определение температуры производится с погрешностью не более 1 °С, парциального давления водяного пара - не более 0,1 гПа, продолжительность солнечного сияния - не более 10 мин за сутки, скорость ветра - не более 1 м/с.

2. Актинометрические приборы

Почти все актинометрические приборы основаны на опреде­ лении изменения температуры теплочувствительных элементов под воздействием радиации. Радиация поглощается чувствитель­ ным элементом и превращается в тепло. Изменение температуры чувствительного элемента прибора, пропорциональное энергети­ ческой освещённости, измеряется термоэлементами или термоба­ тареями.

Основными измерительными приборами являются термоэлек­ трические: актинометр, пиранометр, балансомер. Определяемые виды радиации при попадании на приемную поверхность этих приборов преобразуются в электрический ток, который измеряется гальванометром. Поэтому при нахождении радиационных потоков

каждого прибора в паре с гальванометром вычисляется перевод­ ной множитель: Д

а = - ^- (R 6 + R r + Rd) ,

где К - чувствительность приемной поверхности измерительного прибора (мВ/кВт); а - цена деления гальванометра в микроампе­ рах (lO""6 A), R6 и Rr - сопротивление термоэлектрической батареи

и рамки гальванометра (Ом), - добавочное сопротивление если оно используется при измерениях (Ом).

Перечисленные характеристики указываются в проверочных свидетельствах приборов.

Актинометр термоэлектрический М-3 (АТ-50) (рис. 2). Прибор предназначен для измерений прямой солнечной радиации S, кроме того, используется в качестве образцового прибора для определения чувствительности пиронометров и балансомеров.

Для наблюдений на актинометрической стойке с неподвижной стрелой трубку 7 устанавливают с помощью штатива 10-11, кото­ рый ориентируют стрелкой на север, затем ослабляют винт 2 и

ставят сектор широт 9 по широте. Ослабляют винт 3 и, вращая трубку 7 и рукоятку 6 , нацеливают трубку на Солнце. Ось 8 шта­ тива и рукоятка 6 расположены по оси мира, и поэтому, вращая рукоятку 6 , можно вести трубку за Солнцем, лишь изредка по­

правляя наклон трубки по склонению вращением на оси 4. Наце­ ливание производится с помощью экрана 5 на нижнем конце труб­ ки, где должна концёнтрично располагаться тень от оправы вход­ ного окна. Для более точного нацеливания служит отверстие в оп­ раве трубки 7 и чёрная точка на белой поверхности экрана 5, на которую устанавливается световой зайчик. При работе на актино­ метрической стойке с подвижной стрелой наводку осуществляют только вращением осей 4 и 8 и не осуществляют установку акти­

нометра на север и по широте. Крышка 1 надевается на трубку для контроля места нуля. В комплекте также имеется футляр для за­ щиты актинометра от внешних воздействий в промежутках между наблюдениями.

Рис. 2. Актинометр термоэлектрический М-3 (АТ-50).

Приёмником актинометра служит диск из сусального серебра толщиной 0,003 мм и диаметром 11 мм, расположенный в конце трубки 7. Обращённая к Солнцу сторона серебренного диска по­ крыта матово-чёрной эмалью, а к обратной стороне приклеена па­ пиросная бумага толщиной 0,009 мм и 26 спаев термобатареи из константана и манганина в форме ленточек, расположенных звез­ дообразно. Внешние спаи приклеены через бумажную изоляцию к медному кольцу. В трубке имеются семь постепенно сужающихся к приёмнику радиации диафрагм, обеспечивающих угол зрения прибора в 10 °.

Выводы термобатареи присоединяются к гальванометру, по­ казания которого пропорциональны термоэлектродвижущей силе, а она пропорциональна разности температур центральных и пери­ ферийных спаев, а эта разность пропорциональна интенсивности радиации.

Перед наблюдением открытая трубка нацеливается на Солнце на 2 мин для просушки черни на приёмнике. Затем крышка наде­ вается и через 25 с отсчитывается место нуля. Через 25 с после снятия крышки можно производить наблюдения.

Контроль чувствительности актинометра производится парал­ лельными наблюдениями по пиргелиометру или по хорошо прове­ ренному образцовому актинометру. Проверка актинометра по пир­ гелиометру производится только при высотах Солнца больше 22°, при голубом небе и при отсутствии облаков на расстоянии 20 ° во­

круг Солнца.

Термоэлектрический пиранометр М-80М (рис.3). Прибор предназначен для измерения суммарной радиации Q, отражённой коротковолновой RK , а также рассеянной D, при использовании теневого экрана.

Рис. 3. Термоэлектрический пиранометр М-80М.

Выпускается пиранометр с приёмником М-115, у которого квадратная термобатарея 3 окрашена в чёрно-белый цвет в виде шахматной доски. Чёрные поля закрашены платиновой чернью и закопчены сажей с коэффициентом поглощения 5=0,985, которая поглощает коротковолновую и длинноволновую радиацию, а бе­ лые поля закрашены магнезией, поглощающей только длинновол­ новую радиацию. Поля по-разному поглощают солнечную посту-

пающую радиацию и нагреваются пропорционально поглощённой радиации. Термобатарея размером 32x32 мм составлена из пло­ ских ленточек манганина и константана, уложенных зигзагообраз­ но и составляющих 87 термоэлементов. Ленты последовательно спаяны в 32 полосы. Приёмник пиранометра 1 защищается от вет­ ра и гидрометеоров полусферическим стеклянным колпаком, про­ пускающим радиацию в диапазоне от 0,33 до 3 мкм.

При измерениях на актинометрической стойке с неподвижной стрелой приёмник может быть установлен горизонтально с помо­ щью уровня 7 и винтов 4. Теневой экран 5 - диск диаметром 85 мм прикрепляется к стержню 6 длиной 485 мм, причём диск виден из центра термобатареи под углом 10 °, что позволяет исключить по­

падание прямой солнечной радиации на приёмник. Для затенения ослабляют винт 8 и стойка поворачивается стержнем к Солнцу.

Рассеянную радиацию измеряют при затенённом приёмнике.

Для измерения отражённой радиации пиранометр, установ­ ленный на планке толщенной до 2 см, отгибая пружину 2, опроки­

дывают приёмником вниз. Поверхность участка под пиранометром должна быть горизонтальна и в радиусе 5 м покрыта естественной растительностью.

При работе на актинометрической стойке с подвижной стре­ лой М-13а используют только приёмник радиации М-115. Все операции по горизонгированию, затенению и опрокидыванию производят с помощью рукояток и регулировочных винтов акти­ нометрической стойки. Стеклянный колпак пиранометра защищён от отражённой радиации чёрным плоским кольцевым защитным экраном, расположенным в плоскости приёмника. Экран защищает колпак также и от радиации неба при измерениях отражённой ра­ диации.

К пиранометру придаётся крышка, надеваемая на приёмник для определения места нуля. Перед измерениями приёмник пира­ нометра облучают прямой радиацией для просушки. Постоянная времени пиранометра 7-9 с, что требует выдержки до 35-50 с для достижения устойчивого показания.

Контроль чувствительности пиранометра производится парал­ лельными наблюдениями по образцовому актинометру и проверяе­ мому пиранометру установленному в поверочную трубу ПО-11.

В -S ",

Термоэлектрический балансомер М-10М (рис.4). Прибор предназначен для измерения радиационного баланса В, а также радиационного баланса без прямой солнечной радиации при использовании теневого экрана.

Балансомер представляет собой круглую плоскую пластинку 1 диаметром 100 мм с двумя квадратными чёрными приёмниками 2

на противоположных сторонах, отмеченных №1 и №2. Приёмные пластинки из меди зачернены матово-чёрной эмалью. При измере­ ниях один приёмник обращён к исследуемой поверхности (вниз) и на него поступают коротковолновый поток отражённой солнечной радиации R K и земное издучение Е 3 вместе с отражённой частью длинноволнового Я д излучения атмосферы Е л и окружающих предметов. Другой приёмник, обращённый вверх, получает сум­ марную солнечную радиацию Q вместе с излучением атмосферы Е л. Следовательно, балансомер измеряет разность:

B = (S " + D + E a ) - (R k + R „ + E 3) .

При затенённом балансомере исключается S", которая гораздо точнее вычисляется по показаниям актинометра.

Температура каждой пластины приёмника зависит от погло­ щённой радиации и отличается от температуры воздуха, а также зависит от скорости ветра, так как с увеличением скорости ветра усиливается конвективный теплообмен. Поэтому при измерении по балансомеру всегда производятся отсчёты скорости ветра по анемометру, установленному на одном уровне с балансомером.

Влияние ветра на показания балансомера учитывают введени­ ем поправочного множителя Фу. Поправочным множителем к по­ казаниям балансомера при ветре называется число, на которое нужно умножить показание балансомера при данной скорости вет­ ра, чтобы получить показание балансомера при штиле.

Разность температур приёмных пластин, зависящая от балан­ са, измеряется термобатареями, спаи которых поочерёдно распо­ ложены у пластин. Термобатареи представляют собой медные бруски с намотанной на них константановой лентой, на половину каждого витка нанесён слой серебра толщиной 0,03 мм.

Для установки на актинометрическую стойку с неподвижной стрелой балансомер выпускается с двумя шаровыми шарнирами 3,

Росенйиаш государственный

Б И Б Л И О Т Е К А

19619$, CHS, Малаотжнский пр., 98

4 и теневым экраном 5. При затенении экран должен быть виден из центра приёмника под углом 10 °. При этом тень от шарнира с за-

тенителем должна направляться в сторону шарнира с балансомером, а балансомер должен располагаться рукояткой перпендику­ лярно направлению на Солнце. Для такой установки планка с шарнирами прикрепляется к стойке одним винтом и при измене­ нии азимута Солнца вращается вместе с балансомером.

При работе на актинометрической стойке с поворотной стре­ лой поворот балансомера осуществляют поворотом всей стойки. Затенение осуществляют теневым экраном стойки.

Рис. 4. Термоэлектрический балансомер М-10М

Поворачивая первую сторону вверх при высоком Солнце и открытом приёмнике, соединяют балансомер с гальванометром так, чтобы стрелка отклонялась вправо. Если балансомер подклю­ чается через переключатель, то такое положение переключателя отмечается знаком “+”, причём знак меняется на обратный в сле­ дующих случаях:

а) при отклонении стрелки влево от нуля, б) при переключении в другое отрицательное положение пе­

реключателя,

в) при переворачивании балансомера вторым приёмником. Для защиты балансомера от осадков и пыли, между измере­

ниями, используют специальный футляр 6 .

Определение чувствительности производится сравнением по­ казаний актинометра с показанием балансомера, установленного в поверочную трубу ПО-11.

Гальванометр ГСА-1М (рис.5). Гальванометр стрелочный актинометрический служит для измерения тока, возникающего в термобатареях термоэлектрических актинометрических приборов.

На корпусе гальванометра 1 снизу укреплены три клеммы 2, обозначения которых “+”, “Р” и “С” нанесены на крышке корпуса 3 сбоку. Выводы рамки гальванометра припаяны к клеммам “+” и “Р”. К клеммам “Р” и “С” припаяны выводы добавочного сопро­ тивления. При включении гальванометра для измерения тока на клеммы “+” и “Р” в цепь тока включается только рамка гальвано­ метра. При включении же гальванометра на клеммы “+” и “С” в цепь тока последовательно с рамкой гальванометра включается

Рис. 5. Гальванометр ГСА-1М.

На выступах корпуса укреплена шкала 4, имеющая 100 деле­ ний. На шкале укреплены ограничители хода стрелки. В вырезах

шкалы укреплены зеркальная полоска 5 и термометр 6 . На шкале

нанесены: марка завода-изготовителя, год выпуска и заводской номер гальванометра, индекс гальванометра (ГСА-1), а также ве­ личины внутреннего сопротивления рамки и добавочного сопро­ тивления гальванометра. В крышке корпуса сделан вырез, закры­ тый стеклом 7, через которое производятся отсчёты показаний гальванометра и термометра. Для защиты от повреждений стекло закрывается откидным щитком 8 , на внутренней стороне которого

изображена электрическая схема гальванометра.

В крышке корпуса укреплён винт корректора 9, поворотом винта устанавливается нулевое положение стрелки гальванометра. При отсутствии тока стрелка должна находиться на пятом делении шкалы. Это деление при дальнейшей работе принимается за нача­ ло отсчётов и называется “местом нуля”.

Арретирование гальванометра осуществляется посредством вин­ та 10. При ввинчивании винта электрическая цепь рамки гальвано­ метра замыкается накоротко, в результате чего затухают колебания рамки, возникающие при перемещении гальванометра и толчках.

Гальванометр крепится к основанию футляра 11 специальным

винтом 12 с резиновыми амортизаторами. Сверху гальванометр закрывается кожухом 13, который соединяется с основанием по­ средством штифтов 14, укреплённых на кожухе, и пружины 15.

При включении гальванометра в цепь тока возникает взаимо­ действие магнитных полей рамки с током и постоянных магнитов. Рамка поворачивается, и прикреплённая к ней стрелка перемещает­ ся вдоль шкалы. Угол поворота рамки, а следовательно, и смещение стрелки пропорциональны силе тока, проходящего через рамку.

Стойка актинометрическая М-13а (рис. 6 ). На стойке уста­

навливают актинометр, пиранометр и балансомер, предназначен­ ные для выполнения срочных наблюдений.

Стойку М-13а крепят в грунте опорой 2 со стабилизаторами 1. Насадка 4 установлена на опоре 2. Горизонтальность стрелы 9 ре­ гулируют при помощи трёх винтов 3 по уровню установленному на стреле и фиксируют с помощью винта 5. Внутри направляющей трубы 10 проходит стрела 9, которую можно поворачивать в трубе 10 и фиксировать винтом 11. На стреле 9 крепят головку пирано­ метра 14 и балансомер 18.



Понравилась статья? Поделитесь ей
Наверх