Что такое торф: добыча, применение, переработка. Ресурсы торфа

Детально о технологии производства и использования твердого кускового топлива на основе сырья, буквально лежащего под ногами - торфа

Производство кускового топлива на основе торфа и отходов

Торф и его производные в качестве топлива давно известны отечественным энергетикам. Запасы торфа в России поистине огромны - 700 млрд тонн торфа, приведенного к влажности 40 %. Это более 2,5 млрд ГВт энергии. В период активной торфодобычи (начиная с 50-х до середины 80-х годов) часть торфяных месторождений была не просто разведана - началась их разработка. Сегодня вполне реально выкупить месторождение площадью несколько га, частично разработанное и даже имеющее остатки спецтехники и строений.

Технологии добычи, производства и сжигания топливного торфа разнообразны и экономически доступны. Во многих регионах действуют программы для поддержки предприятий, добывающих и использующих торф. Это значит, что можно выгодно использовать торф в качестве топлива для предприятия.

Классификация топливного торфа

Торф является полезным горючим ископаемым, образовавшимся в условиях болот из скоплений остатков мхов. Кроме того, торф является условно возобновляемым ископаемым, т. к. его образование продолжается до сих пор.

П Р А К Т И К А

В качестве исходного сырья для производства кускового топлива лучше подойдет торф со следующими параметрами: верховой или срединный торф, зольностью менее 23 %, степенью разложения выше 20 %, влажностью до 80 %, добытый открытым «экскаваторным» способом.

Зольность , согласно ГОСТ 21123-85 «Торф. Термины и определения», - это отношение массы минеральной части торфа, оставшейся после прокаливания, к массе сухого торфа. Хотя высокая зольность торфа и является положительной характеристикой для использования в сельском хозяйстве, большое количество золы в используемом топливе приведет к быстрому загрязнению колосников топки, поверхностей теплообмена и газового тракта, и как следствие, усложнит эксплуатацию и снизит ресурс тепловых установок. Снизить процент зольности в добытом торфе невозможно, поэтому использование торфа с зольностью более 23 % для нужд энергетики нежелательно.

Степень разложения - это процентное содержание в торфе гуминовых веществ, мелких частиц тканей растений и т. д. (иными словами, «гумуса»). В некоторых залежах верхового торфа, образовавшегося в условиях лесной местности, степень разложения доходит до 80 %. Теплота, выделяемая при сгорании торфа, напрямую зависит от количества гумуса. Поэтому степень разложения торфа для использования в качестве топлива должна превышать 20 %.
Влажность торфа – процентное содержание воды в общей массе добытого торфа. Данный параметр крайне важен, для эффективного использования в качестве топлива желательна влажность не более 55 %. Как правило, в местах естественного залегания (болота) влажность доходит до 90–98 %! Учитывая тот факт, что часть месторождений нашей страны, заброшенных в конце 80-х годов была осушена и подготовлена к добыче,сегодня реально найти и выгодно выкупить/арендовать заброшенные участки (т. н. карты) разработок.

П Р А К Т И К А

Распространенным способом получения торфа с пониженной влажностью является предварительная подсушка на месторождении (выкопанный торф вначале формируется в отвалы прямо на месторождении, и в течении полугода или более происходит снижение избыточной влаги благодаря солнцу и ветру).

По глубине залегания торф делится на верховой, переходный (срединный) и низинный. Часто месторождения могут сочетать разные типы залегания, такой тип называется смешанным. От глубины залегания напрямую зависят все физико-химические свойства торфа и возможности его добычи и использования. Топливный (или энергетический) торф находится в верхних, реже в срединных слоях. Такой торф имеет низкую зольность (от 1 % до 5 %), высокую степень разложения (не менее 20 %) и теплоту сгорания до 5,6 Гкал на тонну сухого вещества.

Иногда возможно использование низинного торфа в энергетических целях (при условии зольности менее 23 % и степени разложения не менее 15 %), но и теплота сгорания такого топлива колеблется от 3,3 Гкал до 4,5 Гкал. Кроме того, низинный торф по сравнению с верховым имеет большее содержание кальция, азота и микроэлементов - Cu, Mo, Со, Mn и др. , что плохо скажется на его использовании в качестве топлива.

Как правило, самым простым и наименее финансово- и энергозатратным способом оказывается открытая добыча торфа экскаватором. Гидравлический способ из-за высокой технологичности на сегодняшний день малорентабелен, особенно для малых и средних предприятий.

Что такое «кусковое» топливо?

Кусковым топливом на основе торфа называют формованные куски торфа, смешанного с мелкой древесной щепой, опилками (иногда используют другие местные источники: костру, уголь, измельченную солому и т. д.). При этом основу топливного куска (65–85 %) составляет именно торф, а примешиваемые добавки - связующее вещество (не более 35 %) служат для корректировки физико-химических свойств, в том числе увеличения механической прочности готового куска, уменьшения затрат на сушку топлива за счет добавления сухих компонентов, увеличение насыпной плотности в массе материала, быстрый розжиг и лучшее сгорание топлива.

П Р А К Т И К А

Параметры выпускаемого топлива могут сильно отличаться на разных предприятиях в зависимости от исходного сырья и технологии производства. Продукция состоит из фракций (кусков) цилиндрической формы диаметром 8–20 мм и длиной 20–200 мм. Насыпная плотность кускового топлива 350-650 кг/м³, влажность 25–45 %, энергетическая ценность 3–4,3 Гкал/т. Готовое топливо складируется в отвалах под навесом (при условии вентиляции склада).

Разумеется, точные параметры получившегося топлива будут индивидуальны, т. к. каждое предприятие по изготовлению топлива работает с различными характеристиками исходного сырья, имеет отличия в технологии производства, способах хранения и транспортировки готового топлива.

Внешне одна фракция торфяного кускового топлива выглядит как цилиндр диаметром 8–20 мм и длиной 20–200 мм. Размеры готового куска могут варьироваться в зависимости от выбранного оборудования для формования и его индивидуальных настроек. Насыпная плотность готового продукта близка к торфобрикетам - от 400 до 650 кг/м3. Влажность зависит от исходного сырья и способов сушки, однако возможно без лишних энергозатрат выйти на значение между 25 и 45 %. Зольность готового топлива зависит только от исходного сырья, искусственно повлиять на данный параметр невозможно.

Важная характеристика получаемого топлива - его энергетическая ценность. В зависимости от многих факторов (используемого при производстве сырья, способа сушки, формовки и т. д.) калорийность готового куска составит от 3000 до 4300 ккал/кг. При сжигании куска, в отличие от древесных и сухих растительных видов топлива, в дымовой тракт котлов не попадают несгоревшие искры, что избавляет от необходимости установки на газовом тракте котла циклонов, а на дымовой трубе – искрогасителя.

Готовый кусок либо складируется в отвалах (при этом склад топлива должен быть защищен от атмосферных осадков и оснащен вентиляцией для исключения набора влаги в готовом топливе), либо расфасовывается в мешки - «биг-бэги» и в таком виде отправляется на склад. Транспортировка кускового топлива ничем не отличается от торфобрикетов или деревянных пеллет.

Ближайшие аналоги на основе торфа

В силу собственного опыта отдаю предпочтение технологии производства и сжигания кускового комбинированного топлива торфа. Но есть несколько технико-экономических факторов, позволяющие устранить известные недостатки аналогичных торфяных топлив.

П Р А К Т И К А

Кусковое топливо лишено основных недостатков привычных аналогов – торфобрикета и фрезера. В отличие от торфяной крошки его легко транспортировать, хранить и сжигать, а по сравнению с торфобрикетом кусковое топливо менее энергозатратно при производстве.

Торфяная пыль/крошка - данный вид топлива кажется наиболее простым и доступным: достаточно лишь высушить добытый с помощью фрезы торф - и вот готовое топливо. Но транспортировать (особенно на дальние расстояния) и складировать такое топливо проблематично (с одной стороны, торф в рассыпном виде моментально вбирает влагу, с другой - сильно пылится, что отрицательно сказывается на пожарной безопасности и здоровье персонала). Сжигать такое топливо в обычных твердотопливных котлах сложно, для него используется специализированное (более сложное и дорогое) оборудование, которое также нужно обслуживать.

Торфяной брикет - как правило, именно его подразумевают, когда говорят о современном использовании торфа в энергетике. Готовый брикет обладает высокими потребительскими свойствами в качестве топлива. Согласно ГОСТ Р 54248-2010 «Брикеты и пеллеты (гранулы) торфяные для коммунально-бытовых нужд», торфяной брикет имеет высокую насыпную плотность (от 450 до 750 кг/м3), низкую влажность (не более 20 %), неплохую калорийность (удельная теплота сгорания не менее 3000–3500 ккал/кг).

Брикеты имеют относительно однородный по своим физико-механическим свойствам состав, что дает больше возможностей для автоматизации при сжигании такого топлива.

Однако, имея столь соблазнительные характеристики готового продукта, брикет очень энергозатратен в производстве. В технологическом процессе задействовано прессование (гранулирование), для которого необходим дорогой и мощный пресс-гранулятор, среднее потребление электроэнергии на котором не менее 70–80 кВт на 1 тонну готовой продукции.

Также брикетирование подразумевает высокую степень осушения торфа в начале технологической линии, что приводит к большим затратам тепловой энергии.


Научные исследования сосредоточиваются в основном на изучении отдельных торфяных месторождений, видах залежей и видах торфа . Это осложняет оценку потенциальной значимости торфяных ресурсов отдельных стран и тем более ограничивает прогнозирование освоения их для тех или иных целей. На международных конгрессах по торфу докладывались некоторые результаты работ, выполненных в данном аспекте. Неоднократно, например, отмечалось влияние геоморфологических, геологических, климатических и гидрогеологических факторов на образование, формирование и характер торфяных залежей.

В зависимости от этих факторов, хотя и в различной интерпретации, классифицируются торфяные залежи и оцениваются возможности их освоения и направления использования. Последовательно над решением этой задач» работают ученые Финляндии, Польши, Швеции, США, Италии и других стран. Торфяные месторождения Италии, например, классифицируются по типам с учетом геоморфологических условий географического положения. По геоморфологическому принципу предлагают классифицировать торфяные месторождения и английские ученые.

По мнению ученых, геоморфологические особенности образования торфяных месторождений не в одинаковой мере проявляют- себя в различных географических условиях. Общепринятые связи» торфообразующего рельефа и стратиграфии торфяных залежей иногда нарушаются. Так, отмечается, что на образовании торфяников; Исландии очень сильно сказалось выпадение большого количества осадков (до 2200 мм в год) и слабое испарение в условиях прохладного океанического климата. Поэтому торфяники занимают не только плоские поверхности равнин и бассейнов, но и холмы и, нижнюю часть горных склонов. Несмотря на это, собственно верховых торфяников в Исландии нет. Таким образом, здесь как бы нарушаются связи между типом залежи и геоморфологическими условиями образования торфяного месторождения.

Рассматривая возможные пути построения классификации для: оценки торфяных залежей различных географических зон, ученые США считают, что ни одна классификация не может служить для всех целей. В своих рекомендациях о принципах построения классификации они указывают, что главными объектами классификации являются органические горизонты, а не топография местности и климатические зоны или геология бассейнов. Установление определенных диагностических («ключевых») горизонтов (слоев) профиля залежи торфа является первым и наиболее важным шагом в классификации. Для правильного определения диагностических, горизонтов торфа используется степень изменения вещества торфа.

Целесообразность построения классификации торфяников в: зависимости от потенциальной реакции роста лесов на осушение торфяников и внесение удобрений отмечается шведскими учеными Хотя эта классификационная схема не окончательная, она представляет образец определенного подхода к решению этого вопроса и является модификацией схемы, подготовленной учеными Финляндии.

В работах канадских ученых подчеркивается, что одним из препятствий к эффективному сравнению результатов исследований» технических свойств разных видов торфа является отсутствие адекватной системы классификации. Для внесения такой адекватности в теорию и практику оценки торфа они считают возможным рассматривать структуру торфа как естественную основу для количественной классификации материала, как в сухом, так и в сыром состоянии. По их мнению, разнообразие торфа, встречающееся в природе, может быть сведено к относительно небольшому числу общих структурных типов торфов.

Макро- и микроскопическое изучение этих основных структурных типов, по мысли авторов, должно привести к разработке математической модели для каждого- типа, которая будет адекватно отражать природное состояние. Основные компоненты торфов можно свести к относительно небольшому количеству структурных сущностей, которые можно оценить количественно.

Делается попытка осуществить экологический подход к классификации торфяных болот различных географических районов Европы (Ирландия, восточная часть Англии, Шотландия, центральная часть Англии, район Мазурских озер Польши и т. д.) в пределах модели торфяной залежи с постепенным изменением водного режима. Модель переносится на действительность биотического процесса, последовательность типов болот регулируется жизненными процессами болотных растений, включающими отложения торфа (накопление энергии) внутри экологической системы.

Высказывается возможность применения «негенетической классификации для предсказания качества торфяных залежей в любой зоне пород». Основанием для этого является знание геологической обстановки во время и после аккумуляции. Качество торфа зависит от интенсивности роста растительности, образующей торф, и от возможности аккумуляции и сохранения этой растительности при отсутствии выветривания и загрязнения осадками. Геологические образования залежей торфа зависят от размера, формы и вещества депрессии (впадины), содержащей залежи, и топографического положения, связанного с прошедшей и настоящей картиной земли и поверхности воды района.

Минералы и горные породы / Описание минерала Торф

На нынешний временной отрезок огромное количество граждан начали уделять больше времени для работ в своем дворе и огороде. Для повышения плодородности земли могут использоваться разнообразные варианты. Самым популярным и эффективным считается применение торфа, который довольно просто приобрести и доставить на необходимый объект. Сам торф представляет собой полезное ископаемое, которое располагает горючими функциями. Процесс его образования основан на разложении мха на болотной местности. Данный вид удобрений может также применяется в производстве горшков для рассады и всевозможных бытовых материалов. На данный момент есть колоссальное разнообразие видов торфа, такие как низинный, и многие другие. Применение каждого из них зависит от особенностей почвы и самого состава ископаемого.

Способы добычи торфа.

Активное развитие всевозможных технологий производства позволило полностью автоматизировать процесс добычи представленного ископаемого. Самыми применяемыми способами получения торфа считаются:
1. Гидроторф. Основывается на применении гидравлического метода;
2. Фрезоторф. Процедура добычи происходит при помощи фрезерного барабана. Именно данный вид является самым популярным, при помощи которого добывается и многие другие разновидности торфа;
3. Экскаваторный метод. Добыча происходит посредством уникального дискового экскаватора;
4. Резной способ. Используется как человеческий так и машинный труд. Обычно применяется на небольших торфяниках;
Прежде чем начинать процесс добычи торфа, необходимо найти места его распространения.

Этот вид ископаемого довольно распространен по различной территории, поэтому его добыча не сопровождается долгим поиском ресурсов. Торф имеет три главные разновидности: низинный, промежуточный и верховой в зависимости от месторасположения. Главным источником торфа считается болото, которое необходимо подготовить для того, чтобы начать добычу ископаемого. Зачастую болото просушивают, после чего из него извлекаются всевозможные пни и древесину а затем начинается процесс добычи. Использование торфа и разнообразных его видов позволит качественно повысить уровень плодородности Вашего участка, к чему по — любому стремиться каждый человек.

Массив торфа

Торф - сложная полидисперсная многокомпонентная система; его физические свойства зависят от свойств отдельных частей, соотношений между ними, степени разложения или дисперсности твёрдой части, оцениваемой удельной поверхностью или содержанием фракций размером менее 250 мкм. Для Т. характерны большое влагосодержание в естественном залегании (88-96%), пористость до 96-97% и высокий коэффициент сжимаемости при компрессионных испытаниях. Текстура торфа. - однородная, иногда слоистая; структура обычно волокнистая или пластичная (сильноразложившийся торф). Цвет жёлтый или бурый до чёрного.

Слаборазложившийся торф в сухом состоянии имеет малую плотность (до 0,3 г/см 3), низкий коэффициент теплопроводности и высокую газопоглотительную способность; торф высокой дисперсности (после механической переработки) образует при сушке плотные куски с большой механической прочностью и теплотворной способностью 2650-3120 ккал/кг (при 40% влажности). Слаборазложившийся торф - отличный фильтрующий материал, а высокодисперсный используется как противофильтрационный материал. Торф поглощает и удерживает значительные количества влаги, аммиака , катионов (особенно тяжёлых металлов). Коэффициент фильтрации торфа изменяется в пределах нескольких порядков.

Краткий исторический очерк

Первые сведения о торфе как «горючей земле» для нагревания пищи восходят к 46 г. н. э. и встречаются у Плиния Старшего . В 12-13 вв. Т. как топливный материал был известен в Голландии и Шотландии . В в г. Гронингене вышла первая в мире книга о Т. на латинском языке Мартина Шока «Трактат о торфе». Многочисленные неправильные представления о происхождении Т. были опровергнуты в И. Дегнером, применившим к его изучению микроскоп и доказавшим растительное происхождение Т. В России впервые сведения о Т. и его использовании появились в в. в трудах М. В. Ломоносова , И. Г. Лемана, В. Ф. Зуева, В. М. Севергина и др. В 19 в. Т. посвящены работы В. В. Докучаева, С. Г. Навашина, Г. И. Танфильева и др. В России исследования природы Т. носили ботанический характер. После Великой Октябрьской социалистической революции были созданы научные, производственные и учебные организации по комплексному изучению Т. и его использованию в народном хозяйстве (Инсторф, Московский торфяной институт и др.). Работами советских учёных выявлены географические закономерности распространения торфяных залежей, создана классификация видов торфа и торфяных залежей, составлены кадастры и карты торфяных месторождений, изучены химический состав и физические свойства Т. (И. Д. Богдановская-Гиенэф, Е. А. Галкина, Д. А. Герасимов, В. С. Доктуровский, Е. К. Иванов, Н. Я. Кац, М. И. Нейштадт, Н. И. Пьявченко, В. Е. Раковский, В. Н. Сукачев, С. Н. Тюремнов и др.). Проблемами использования Т. в СССР занимаются Всесоюзный научно-исследовательский институт торфяной промышленности (Ленинград) с филиалами в Москве и посёлке Радченко в Калининской области, институт торфа АН БССР, проблемные лаборатории Калининского, Каунасского и Томского политехнических и др. институтов.

Образование торфа

Рис. 1. Схема расположения торфяников по рельефу

Торф - предшественник генетического ряда углей (по мнению ряда учёных). Место образования Т.- торфяные болота (см. Болото), встречающиеся как в долинах рек (поймы, террасы), так и на водоразделах (рис. 1).

Происхождение Т. связано с накоплением остатков отмершей растительности, надземные органы которой гумифицируются и минерализуются в поверхностном аэрируемом слое болота, называемом торфогенным горизонтом, почвенными беспозвоночными животными, бактериями и грибами . Подземные органы, находящиеся в анаэробной среде, консервируются в ней и образуют структурную (волокнистую) часть Т. Интенсивность распада растений-торфообразователей в торфогенном слое зависит от вида растения, обводнённости, кислотности и температуры среды, от состава поступающих минеральных веществ. Несмотря на ежегодный прирост отмершей органической массы, торфогенный горизонт не прекращает своего существования, являясь природной «фабрикой» торфообразования. Поскольку на торфяных месторождениях произрастает много видов растений, образующих характерные сочетания (болотные фитоценозы), и условия среды их произрастания отличаются по минерализации, обводнённости, реакции среды, сформировавшийся Т. на разных участках торфяных болот обладает различными свойствами.

Известен так называемый погребённый Т., который отложился в периоды между оледенениями или оказался перекрытым рыхлыми отложениями разной мощности в результате изменения базиса эрозии. Возраст погребённого Т. исчисляется десятками тысячелетий; в отличие от современного, погребённый Т. характеризуется меньшей влажностью.

Классификация торфа

Рис. 2. Основные виды строения торфяной залежи.

В соответствии с составом исходного растительного материала, условиями образования Т. и его физико-химическими свойствами Т. относят к одному из 3 типов: верховому , переходному и низинному . Каждый тип по содержанию в Т. древесных остатков подразделяется на три подтипа: лесной , лесотопяной и топяной . Т. разных подтипов отличается по степени разложения. Т. лесного подтипа имеет высокую степень разложения (иногда до 80%), у топяного Т. - минимальная степень разложения; лесотопяной Т. занимает промежуточное положение. Подтипы Т. делятся на группы, состоящие из 4-8 видов (табл. 1). Вид - первичная таксономическая единица классификации Т. Он отражает исходную растительную группировку и первичные условия образования Т., характеризуется определённым сочетанием доминирующих остатков отдельных видов растений (а также характерных остатков). Пластообразующими видами Т. называют совокупность нескольких первичных видов Т., мало отличающихся друг от друга по своим свойствам и образующих большие горизонтально залегающие однородные слои. Отложения пластообразующих видов той или иной протяжённости и мощности (толщины), закономерно сменяющиеся в определённой последовательности, образуют торфяную залежь. На характер строения залежи определённой климатической зоны влияют геоморфологические, геологические, гидрогеологические, гидрологические условия каждого конкретного участка болота. В зависимости от сочетания отдельных видов торфов по глубине торфяной залежи последние подразделяются на типы. В промышленной классификации торфяных залежей выделяются 4 типа: низинный, переходный, верховой и смешанный. Первичная единица классификации - вид торфяной залежи (рис. 2). В Европейской части СССР выделяются 25 основных видов торфяных залежей, в Западной Сибири - 32.

Табл. 1. - Классификация видов торфа.
Тип Лесной подтип Лесотопяной подтип Топяной подтип
Древесная группа Древесно-травяная группа Древесно-моховая группа Травяная группа Травяно-моховая группа Моховая группа
Низинный Ольховый
Берёзовый
Еловый
Сосновый низинный
Ивовый
Древесно-тростниковый
Древесно-осоковый низинный
Древесно-гипновый
Древесно-сфагновый низинный
Хвощёвый
Тростниковый
Осоковый
Вахтовый
Шейхцериевый низинный
Осоково-гипновый
Осоково-сфагновый низинный
Гипновый-низинный
Сфагновый
низинный
Переходный Древесный переходный Древесно-осоковый переходный Древесно-сфагновый переходный Осоковый переходный
Шейхцериевый переходный
Осоково-сфагновый переходный Гипновый переходный
Сфагновый
переходный
Верховой Сосновый верховой Сосново-пушицевый Сосново-сфагновый Пушицевый
Шейхцериевый верховой
Пушицево-сфагновый
Шейхцериево-сфагновый
Медиум-торф
Фускум-торф
Комплексный верховой
Сфагново-мочажинный

Торфяные месторождения

Торфяные месторождения - промышленные скопления торфа, четко ограниченные территориально и не связанные с др. скоплениями. Размер площади, занимаемой торфяными месторождениями и болотами в мире, составляет около 350 млн. га, из них около 100 млн. га имеет промышленное значение. На территории Западной Европы расположен 51 млн. га, Азии - свыше 100 млн. га, Северной Америки - свыше 18 млн. га. Данные о запасах Т. и его добыче в СССР и за рубежом приведены в табл. 2. Разведанные запасы Т. в СССР по районам приведены в табл. 3.

Изученность торфяного фонда по экономическим районам страны неравномерна. Так, в Центральном районе РСФСР свыше 70% фонда разведано детально, а в Западно-Сибирском детальная разведка составляет 0,6% фонда района и 82,8% - прогнозная оценка.

Поиск торфяных месторождений включает анализ картографических и аэрофотосъёмочных материалов, поисково-разведочный этап дополняется полевыми работами. Предварительная разведка выполняется на месторождениях площадью свыше 1000 га для определения целесообразности их использования. Детальная разведка производится с целью получения данных для составления проекта разработки и использования торфяного месторождения.

Табл. 2. - Запасы и добыча торфа в СССР и за рубежом (1975).
Страна Запасы торфа,
Млрд. т (40% влажности)
Годовая добыча торфа, Млн. т
СССР 162,5 90,0
Финляндия 25,0 1,0
Канада 23,9 1,0
США 13,8 0,3
Швеция 9,0 0,3
ПНР (Польша) 6,0 1,3
ФРГ (Германия) 6,0 1,5
Ирландия 5,0 5,0
Табл. 3. - Распределение разведанных запасов торфа в СССР (1975).
Республика, экономический район Общая площадь торфяных месторождений
в границах промышленной залежи,
млн. га
Запасы торфа, млрд. т
(40% влажности)
РСФСР 56,6 149,9
Северо-Западный 8,9 19,8
Центральный 1,4 5,2
Центрально-чернозёмный 0,04 0,1
Волго-Вятский 0,5 2,0
Поволжский 0,1 0,3
Уральский 2,7 9,1
Западно-Сибирский 34,1 103,9
Восточно-Сибирский 3,1 4,0
Дальневосточный 5,7 5,2
Калининградская область 0,1 0,3
Украинская ССР 9,9 2,3
Белорусская ССР 1,7 5,4
Латвийская ССР 0,5 1,7
Литовская ССР 0,3 0,8
Эстонская ССР 0,6 2,3
Грузинская ССР 0,02 0,1
Армянская ССР 0,001 0,0024

Разработка торфяных месторождений

Рис. 3. Машина для предварительного осушения залежи.

Разработке Т. предшествуют осушение и подготовка поверхности. Подготовка поверхности месторождения выполняется после сооружения осушительной сети и окончания предварительного осушения залежи (рис. 3). Независимо от того, для каких целей будет использоваться залежь, с её поверхности удаляется древесная, а иногда и моховая растительность, разрабатываемый слой залежи на глубине 25-40 см освобождается от древесных включений или они измельчаются на фракции менее 8-25 мм. Разделённая картовыми канавами и валовыми каналами на определённые участки (карты ) поверхность поля планируется в продольном направлении перпендикулярно валовым каналам и профилируется с поперечным уклоном в сторону картовых канав шнековым профилировщиком. Выполнение этих работ способствует понижению уровня грунтовых вод и уменьшению влажности торфяной залежи до 86-89%, что обеспечивает производительную работу механизмов по добыче, сушке и уборке Т.

Рис 4. Машина для сведения леса и пакетирования древесины

Все операции подготовки поверхности торфяного месторождения механизированы (см. Торфяные машины). Удаление древесной растительности при подготовке включает срезку (валку) деревьев и кустарника с одновременным пакетированием и укладкой деревьев в пакетах на поверхность залежи специальной машиной (рис. 4). Затем пакеты грузятся на тракторные прицепы-самосвалы и вывозятся на промежуточные прирельсовые склады.

Рис. 5. Машина для подготовки полей методом глубокого фрезерования.

Пни и древесные включения корчевальными машинами извлекаются из залежи или перерабатываются машинами глубокого фрезерования (рис. 5) с последующей сепарацией и вывозкой древесных остатков за пределы полей. Для получения Т. с усреднёнными кондиционными свойствами применяются машины для перемешивания залежи или дренажно-обогатительные машины, извлекающие фрезами или барами торфяную массу из слоя залежи, перерабатывающие и расстилающие слой Т. на поверхности поля. Мелкие древесные остатки и щепа убираются с рабочей поверхности карт машинами с накалывающим или барабанно-цепным рабочим органом.

Рис. 6. Уборочная перевалочная машина.

В СССР Т. добывается фрезерным (более 95% общей промышленной добычи), экскаваторным и бескарьерно-глубинным способами. Прообраз экскаваторного способа - элеваторный, которым до Октябрьской революции 1917 добывалось около 1,3 млн. т (1913) кускового Т. Выемка Т. осуществлялась вручную. Элеваторные машины транспортировали Т.-сырец из карьера, перемешивали его и формовали в кирпичи. Операции по сушке, уборке и погрузке производились вручную. В 20-е гг. был разработан способ гидравлической добычи торфа («гидроторф ») с полной механизацией производственных процессов. Он применялся с до . Комплексно-механизированный экскаваторный способ включает выемку Т. из залежи ковшевым устройством, переработку Т.-сырца, его формование и выстилку торфяных кирпичей на поле сушки, уборку и складирование. Фрезерная добыча Т. получила развитие в СССР с конца 40-х гг. Она полностью механизирована и отличается меньшими трудоёмкостью, металлоёмкостью и энергоёмкостью. Основные технологические операции фрезерного способа добычи Т.: измельчение верхнего слоя (фрезерование) залежи на глубине до 25 мм, сушка сфрезерованного Т., уборка и штабелирование готового Т. Продолжительность высыхания слоя от 1 до 2 сут. Число таких циклов в сезоне 20-28; при пневматическом способе уборки до 40-50 циклов. Для добычи Т. фрезерным способом применяются 3 схемы: уборочно-перевалочная (рис. 6), бункерная механическая и бункерная пневматическая. Добытый торфяными машинами Т. в среднем около 6 мес хранится в полевых штабелях. Наиболее эффективный способ хранения и борьбы с самовозгоранием Т. - изоляция штабелей от атмосферного воздуха слоем сырого Т.; внедряется (1975) изоляция полимерной плёнкой.

Погрузка торфа в вагоны для перевозки торфа в Радовицком

Бескарьерно-глубинным способом добывают кусковой Т. для коммунально-бытовых нужд. Сущность его заключается в экскавации Т. из узких траншей, переработке, формовании и выстилке торфяных кирпичей на поле добычи - сушки с одновременным задавливанием траншей добывающей машиной.

В процессе переработки торфа благодаря увеличению удельной поверхности диспергируемого материала улучшаются свойства продукции. Диспергирование Т.-сырца повышает коэффициент объёмной усадки, являясь предпосылкой получения не только плотной, но и прочной продукции. Переработка снижает влагоёмкость топливного Т. Механическая переработка Т. осуществляется рабочими органами различных типов: шнековыми, шнеково-ножевыми, спирально-конусными, конусными, щелевыми, дробильными, перетирателями.

Комплексное использование торфа

В 16-17 вв. из торфа выжигали кокс , получали смолу, Т. применяли в сельском хозяйстве, медицине и т.д. В конце 19 - начале 20 вв. началось промышленное производство торфяного полукокса и смолы. В 30-50-х гг. Т. стали использовать в энергетике, а также для производства газа и как коммунально-бытовое топливо. В 50-х гг. проведены исследования по энерготехнологическому применению Т. Возможность использования торфа из одного месторождения одновременно для сельского хозяйства и промышленности привела к созданию нового направления - комплексного использования Т.; этому способствуют многообразные свойства различных его видов. Так, в верховом слаборазложившемся Т. содержание углеводов достигает 40-50%; в сильноразложившемся Т. гуминовые кислоты составляют 50% и более. Отдельные виды Т. богаты битумами , содержание которых достигает 2-10%. Малоразложившийся верховой Т. обладает высокой водо- и газопоглотительной способностью, низким коэффициентом теплопроводности.

Рис. 7. Приготовление торфяных компостов на месторождении.

Торф высокой степени разложения находит разнообразное применение в сельском хозяйстве (табл. 4). Его используют для приготовления компостов (рис. 7), смесей с минеральными туками и известью, для производства торфоаммиачных и торфоминерально-аммиачных удобрений (см. Органо-минеральные удобрения). Торф, содержащий вивианит , применяют как фосфорное удобрение, известь - как известковое удобрение. Низинный Т., внесённый в больших дозах (500 т/га и более), способствует окультуриванию дерново-подзолистых почв, улучшению их физических и физико-химических свойств.

Торф представляет собой комплексное полезное ископаемое, один из важных видов природных ресурсов, образующийся в процессе естественного отмирания и неполного распада болотных растений в условиях избыточного увлажнения и затрудненного доступа воздуха. Он используется как удобрение, топливо, сырье для , строительный материал, а также для медицинских целей (так называемая торфотерапия).

По запасам и площади торфяных залежей, ценности и разновидности их ресурсов не имеет себе равных в мире. Мировые запасы торфа оцениваются около 500 млрд т, из которых около188 млрд т (более 37%) приходится на долю России.

Торфяные ресурсы нашей страны распределены крайне неравномерно. Более 80% их расположены в Сибири, остальная часть - в Европейской части страны. Особенно много торфяных месторождений в Западной Сибири. Здесь учтено 5004 месторождения, общие ресурсы которых составляют более 100 млрд т, то есть более 20% мировых и более 50% российских запасов.

Огромные ресурсы торфа Западной Сибири (почти 90%) представлены крупными залежами площадью более 50 тыс. га, из которых выделяются месторождения, расположенные на Васюганском болоте Томской области: Васюганское (2310,4 тыс. га), Коноваловское-Юголовское-Карасье (373,5 тыс. га), Пасол и Когот (210,3 тыс. га), Малое Васюганское (141,7 тыс. га), Лебяжье-Исанское (53,3 тыс. га). Другие крупные торфяные месторождения Томской области - Кулай (72 тыс. га), Андрюшкино II (77,7), Александровское (75), Озерное большое (572,4 тыс. га).

Основные залежи торфа в стране сформировались в за последние 7–10 тыс. лет. Толща торфяного пласта ежегодно нарастает на 0,2–2,0 мм (то есть на площади в 80,5 млн га ежегодно формируется более 100 млн т торфа стандартной влажности). По принятым стандартам 96% торфа пригодны для производства компостов и 90% - топлива.

Торф - это природная кладовая гуминовых веществ, составляющих от 20 до 70% органической массы, а также азота, содержание которого в среднем составляет: в верховом торфе -1,5% (от 0,6 до 2,5%), в низинном - 2,6% (от 1,3 до 3,8%).
Различают следующие виды торфов: низинный, переходный и верховой. Верховые торфяники расположены на водоразделах; низинные - на понижениях рельефа, чаще всего в поймах. Поэтому низинный торф считают лучшим для производства удобрений; однако из-за меньшей влагоемкости он уступает верховому при производстве подстилочного навоза. Особенно широко торф используется в Нечерноземной зоне страны.

На топливно-энергетические цели за последнее столетие в России использовано около 1 млрд т торфа, что равноценно 400 млн т каменного угля. До недавнего времени страна являлась самым крупным потребителем топливного торфа. В настоящее время она занимает лишь четвертое место в мире, уступая , и , где вклад торфа в производство энергии составляет от 10 до 20%.
Энергетический потенциал торфяных ресурсов России, оцениваемый в 49,5 млрд т условного топлива, свидетельствует о недостаточности его использования в энергетическом балансе страны. Запасы торфа только на разрабатываемых месторождениях позволяет довести объем его добычи до 10–11 млн т в год, что теоретически эквивалентно 7% объема ежегодно потребляемого в России угля.

Следует отметить важное обстоятельство, повышающее конкурентоспособность торфяного топлива, - его экологическую безопасность, простоту утилизации торфяной золы (по сравнению с угольными шлаками), снижение вредных выбросов в , в первую очередь оксидов серы и азота.

Для торфотерапии обычно используют торф, соответствующий санитарно-гигиеническим требованиям, - высокой (более 60 %) степени разложения и подогретый до 42–52°С. Торфолечение переносится легче, чем лечение иловой грязью.

Кризис последних лет особенно сказался на сельскохозяйственном использовании торфа. В предреформенные годы - период интенсивной сельского хозяйства, доля торфа в органических удобрениях России достигала 12–15 %, а в некоторых районах, особенно Нечерноземья, до 50–60 %. Среднегодовое внесение торфа в 1986–1990 гг. составило около 92 млн т, в 1994 г. - 29 млн т, в 1997 г. - менее 5 млн т. Доля торфа, используемого в качестве органического удобрения, резко упала во всех экономических районах страны.



Понравилась статья? Поделитесь ей
Наверх