Химические основания список. Основания. Химические свойства и способы получения

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.

ОПРЕДЕЛЕНИЕ

Гидроксидами называются сложные вещества, в состав которых входят атомы металлов, соединенные с одной или несколькими гидроксогруппами.

Большинство оснований - твердые вещества с различной растворимостью в воде. Гидроксид меди (II) голубого цвета (рис. 1), гидроксид железа (III) бурого, большинство других белого цвета.

Рис. 1. Гидроксид меди (II). Внешний вид.

Получение гидроксидов

Растворимые основания (щелочи) в лаборатории можно получить при взаимодействии активных металлов и их оксидов с водой:

CaO + H 2 O = Ca(OH) 2 .

Щелочи гидроксид натрия и гидроксид кальция получают электролизом водных растворов хлорида натрия и хлорида калия.

Нерастворимые в воде основания получают по реакции солей с щелочами в водных растворах:

FeCl 3 + 3NaOH aq = Fe(OH) 3 ↓ + 3NaCl.

Химические свойства гидроксидов

Растворимые и нерастворимые основания имеют общее свойства: они реагируют с кислотами с образованием солей и воды (реакция нейтрализации):

NaOH + HCl = NaCl + H 2 O;

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O.

Растворы щелочей изменяют цвет некоторых веществ - лакмуса, фенолфталеина и метилового оранжевого, называемых индикаторами (табл. 1).

Таблица 1. Изменение цвета индикаторов под воздействием растворов кислот и оснований.

Кроме общего свойства, щелочи и нерастворимые в воде основания обладают также специфическими. Например, при нагревании голубого осадка гидроксида меди (II) образуется вещество черного цвета - это оксид меди (II):

Cu(OH) 2 = CuO + H 2 O.

Щелочи, в отличие от нерастворимых оснований, при нагревании обычно не разлагаются. Их растворы действуют на индикаторы, разъедают органические вещества, реагируют с растворами солей (если в их состав входит металл, способный образовать нерастворимое основание) и кислотными оксидами:

Fe 2 (SO 4) 3 + 6KOH = 2Fe(OH) 3 ↓ + 3K 2 SO 4 ;

2KOH + CO 2 = K 2 CO 3 + H 2 O.

Применение гидроксидов

Гидроксиды находят широкое применение в промышленности и быту. Например, большое значение имеет гидроксид кальция. Это белый рыхлый порошок. При смешивании его с водой образуется так называемое известковое молоко. Так как гидроксид кальция немного растворяется в воде, то после отфильтровывания известкового молока получается прозрачный раствор - известковая вода, которая мутнеет при пропускании через неё диокисда углерода. Гашеную известь применяют дляприготовления бордосской смеси -средства борьбы с болезнями и вредителями растений. Известковое молоко широко используют в химической промышленности, например при производстве сахара, соды и других веществ.

Гидроксид натрия применяют для очистки нефти, производства мыла, в текстильной промышленности. Гидроксид калия и гидроксид лития используют в аккумуляторах.

Примеры решения задач

ПРИМЕР 1

Задание В одном из гидроксидов олова массовая доля элементов равна: олова - 63,6%; кислорода - 34,2%; водорода - 2,2%. Определите формулу этого гидроксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (олово), «у» (кислород) и «z» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(Sn)/Ar(Sn) : ω(O)/Ar(O) : ω(H)/Ar(H);

x:y:z = 63,6/119: 34,2/16: 2,1/1;

x:y:z = 0,53: 2,14: 2,1 = 1: 4: 4.

Значит формула гидроксида олова имеет вид Sn(OH) 4 .

Ответ Формула гидроксида олова имеет вид Sn(OH) 4

ПРИМЕР 2

Задание Определите массовую долю гидроксида бария в растворе, полученном при смешивании воды массой 50 г и оксида бария массой 1,2 г.
Решение Массовая доля вещества Х в растворе рассчитывается по следующей формуле:

ω (Х) = m(X) / m solution × 100%.

Масса раствора складывается из масс растворенного вещества и растворителя:

m solution = m(H 2 O) + m(BaO) = 50 + 1,2 = 51,2 г.

Запишем уравнение реакции получения гидроксида бария:

BaO + H 2 O = Ba(OH) 2 .

Рассчитаем количества моль исходных веществ:

n(H 2 O) = m(H 2 O) / M(H 2 O);

M(H 2 O) = 18 г/моль;

n(H 2 O) = 50 / 18 = 2,8 моль.

n(BaO) = m(BaO) / M(BaO);

M(BaO) = 153 г/моль;

n(BaO) = 1,2 / 153 = 0,008 моль.

Расчет ведем по соединению, находящемуся в недостатке (оксид бария). Согласно уравнению

n(BaO) :n(Ba(OH) 2) = 1:1, т.е. n(Ba(OH) 2) = n(BaO) = 1,04 моль.

Тогда масса образовавшегося гидроксида бария будет равна:

m(Ba(OH) 2) = n(Ba(OH) 2) × M(Ba(OH) 2);

M(Ba(OH) 2) = 171 г/моль;

m(Ba(OH) 2) = 0,008 ×171 = 1,368 г.

Найдем массовую долю гидроксида бария в растворе:

ω (Ba(OH) 2) = 1,368 / 51,2 × 100% = 2,67%.

Ответ Массовая доля гидроксида бария равна 2,67%

Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

Гидроксиды щелочных металлов – при обычных усло­виях представляют собой твердые белые кристаллические вещества, гигроско­пичные, мылкие на ощупь, очень хорошо растворимы в воде (их растворение – экзотермический процесс), легкоплавки. Гидроксиды щелочноземельных металлов Са(ОН) 2 , Sr(OH) 2 , Ва(ОН) 2) – белые порошкообразные вещества, гораздо менее растворимы в воде по сравнению с гидроксидами щелочных металлов. Нерастворимые в воде основания обычно образу­ются в виде гелеобразных осадков, разлагающихся при хра­нении. Например, Сu(ОН) 2 – синий студенистый осадок.

3.1.4 Химические свойства оснований.

Свойства оснований обусловлены наличием ионов ОН – . В свойствах щелочей и нерастворимых в воде оснований имеются отличия, однако общим свойством является реак­ция взаимодействия с кислотами. Химические свойства оснований представ­лены в таблице 6.

Таблица 6 – Химические свойства оснований

Щелочи

Нерастворимые основания

Все основания реагируют с кислотами (реакция нейтрализации )

2NaOH + H 2 SО 4 = Na 2 SО 4 + 2H 2 О

Сr(ОН) 2 + 2НС1 = СrС1 2 + 2Н 2 O

Основания реагируют с кислотными оксидами с образованием соли и воды:

6КОН + Р 2 O 5 = 2К 3 РO 4 + 3Н 2 O

Щелочи реагируют с растворами солей , если один из продуктов реакции выпадает в осадок (т. е. если образу­ется нерастворимое соединение):

CuSO 4 + 2KOH = Cu(OH) 2 + K 2 SO 4

Na 2 SO 4 + Ba(OH) 2 = 2NaOH + BaSO 4 

Нерастворимые в воде основания и амфотерные гидроксиды разлагаются при на­гревании на соответствующий оксид и воду:

Мn(ОН) 2  МnО + Н 2 O

Сu(ОН) 2  СuО + Н 2 O

Щелочи можно обнаружить индикатором. В щелочной сре­де: лакмус – синий, фенолфталеин – малиновый, мети­ловый оранжевый – желтый

3.1.5 Важнейшие основания.

NaOH – едкий натр, каустическая сода. Легкоплавкие (t пл = 320 °С) белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. NaOH – один из важней­ших продуктов химической промышленности. В больших количествах требуется для очистки нефтепро­дуктов, широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также для производства искусственного волокна.

КОН – едкое кали. Белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. СвойстваКОН аналогичны свойствам NaOH, но применяется гидроксид калия гораздо реже ввиду его более высокой стоимости.

Са(ОН) 2 – гашеная известь. Белые кристаллы, мало ра­створимы в воде. Раствор называется «известковой водой», суспензия – «известковым молоком». Известковая вода применяется для распознавания углекислого газа, она мут­неет при пропускании СO 2 . Гашеная известь широко используется в строительном деле в качестве основы для изготовления вяжущих веществ.



Понравилась статья? Поделитесь ей
Наверх