Классификация природных экосистем биосферы на ландшафтной основе. Влияние деятельности человека на биосферу и ландшафты земли

Биосфера (от греч. «биос» - жизнь, «сфера» - шар) - это область существования и распространения живого вещества. Академик В. И. Вернадский сформулировал понятие биосферы следующим образом: «Биосфера есть организованная, определенная оболочка земной коры, сопряженная с жизнью, и ее пределы обусловлены прежде всего полем существования жизни». Он считал, что биосфера геологически вечна. Следовательно, биосфера - это самая крупная экологическая система, система высшего ранга. В современном состоянии она охватывает нижнюю часть до высоты озонового слоя, всю , педосферу и верхнюю часть литосферы до глубины распространения живых микроорганизмов. Если верхняя граница биосферы достаточно четкая, то нижняя расплывчата и- изменяется не только от к континентам, но и в пределах самих континентов. В их пределах и под дном океанов она ограничивается температурами существования микроорганизмов.

Биосфера Земли функционирует благодаря взаимодействию с атмосферой, гидросферой и литосферой, получая от них , биофильтруя вещества и химические соединения, необходимые для жизнедеятельности.

Наличие биосферы отличает Землю от других планет . Кислородная атмосфера, глобальный круговорот , глобальные круговороты фосфора, углерода, азота и их соединений, так необходимые для функционирования биосферы, существуют только на Земле. Биота играет определяющую роль во всех глобально протекающих биогеохимических процессах и циклах. Благодаря биоте обеспечивается гомеостаз системы, т.е. способность поддерживать ее основные параметры в благоприятных для жизнедеятельности условиях, несмотря на внешние воздействия как естественного, так и антропогенного характера.

Основной процесс образования органического вещества - фотосинтез. Главной целью этого процесса является создание живого вещества из неживого, что обеспечивает устойчивое образование важнейшего из природных ресурсов - первичной биологической продукции.

Судьбу современной биосферы во многом предопределил процесс цефализации. Он заключается в обособлении головы у билатерально-симметричных животных и сосредоточении в ней органов чувств, передних отделов центральной нервной системы, которые у остальных животных находятся в других частях тела. Для защиты этих жизненно важных органов у позвоночных развился череп.

Биосфера возникла на самой ранней стадии развития Земли и в течение длительной геологической истории медленно эволюционировала. На первых этапах (4,0-3,5 млрд. лет назад) биосфера Земли состояла в основном из прокариотных существ, среди которых главными были сине-зеленые водоросли, бактерии и вирусы. Их существование обеспечивала восстановительная бескислородная атмосфера. С возникновением эвкариот существенно меняются функции и условия взаимодействия биосферы с другими геосферами. На протяжении длительного времени (3,5-0,65 млрд. лет) совместно существовали прокариотные и эвкариотные существа, которые в основном являлись одноклеточными формами. Важнейшей вехой в развитии биосферы было появление свободного кислорода в атмосфере и гидросфере и постепенное возникновение озонового экрана. С этого времени главенствующая роль переходит к многоклеточным формам. Появляются и расселяются организмы с твердым известковым, хитиновым и кремнистым скелетом, развиваются разнообразные водоросли и грибы.

Важным рубежом для развития биосферы был ордовикский период, в течение которого растительность постепенно переместилась на сушу, а среди водных организмов появились позвоночные животные с обособленным черепом. Около 350 - 400 млн. лет назад, в девонском периоде, животные вышли на сушу. В течение последующих геологических периодов позвоночные освоили для обитания все существовавшие экологические ниши. В триасовом периоде появились первые млекопитающие, которые заняли главенствующее положение в палеогеновом периоде, после массового вымирания динозавровой фауны 65 млн. лет тому назад. В это же время началось выделение приматов. Около 35-40 млн. лет назад возникли антропоиды. Среди них около 5 млн. лет назад появились гоминоиды, а всего 3,5 млн. лет назад возник человек.

Биологическое разнообразие и биоиндикация

Общее число организмов, населяющих Землю, весьма велико. Считается, что на Земле существуют одновременно от 5 до 80 млн. видов организмов. Значительную часть из них составляют насекомые, бактерии и вирусы. Более или менее четкая таксономическая принадлежность установлена всего для 1,5 млн. видов. Из этого числа около 750 000 составляют насекомые, 41 000 - позвоночные и около 25 000 - растения. Остальные виды представлены сложным набором беспозвоночных, грибов, водорослей и микроорганизмов.

Различные ландшафтно-климатические области отличаются одна от другой не только качественным составом, но и числом видов. Биологическое разнообразие меняется от полюса к экватору. Число пресноводных в тропических экосистемах почти в 5 раз выше, чем в умеренном климате. Во влажных тропических лесах, например в Амазонии, на одном гектаре встречается до 100 видов деревьев, в то время как в аридных областях тропиков их число не превышает 30.

В морской среде наблюдается такая же закономерность. Так, число видов асцидий в Арктике едва превышает 100, а в тропиках достигает 600. Биоразнообразие - основа жизни на Земле и составляет важнейший жизненный ресурс. Люди используют в пищу около 7 000 видов растений, но около 90% мирового продовольствия создается за счет всего 20 видов, из которых пшеница, рожь, кукуруза и рис покрывают около половины всех потребностей. Биологические ресурсы - важный источник сырья для промышленности, в том числе и для медицинской.

В последние десятилетия человечество осознало важность и полезность диких растений и животных. Многие из них не только содействуют развитию сельского хозяйства, используются в медицине и промышленности, но и полезны для окружающей среды, составляя основу природных экосистем. Биоразнообразие считается главным фактором, определяющим устойчивость биогеохимических циклов вещества и энергии в биосфере. Велика роль организмов, которые напрямую используются человеком в пищу, а также животных фильтраторов и детритофагов, которые вносят существенный вклад в круговорот биогенных . И следовательно, среди огромного разнообразия организмов существуют группы, которые приносят пользу косвенным путем. Многие организмы на заре развития Земли внесли огромный вклад в становление и развитие атмосферы и климата Земли, например сине-зеленые водоросли. Деятельность целого ряда животных и растений до сих пор является мощным стабилизирующим фактором в отношении климата.

Итак, под биоразнообразием понимают все виды организмов, которые являются составляющей частью экологических систем и экологических процессов.

Биоразнообразие может рассматриваться на трех уровнях: генетическом, видовом и экосистемном. Генетическое разнообразие представляет собой особый вид генетической , содержащейся в генах организмов, которые обитают на Земле. Видовое разнообразие - это разнообразие видов , населяющих Землю. Разнообразие экосистем касается различных сред обитания, биотических сообществ и экологических процессов в биосфере.

Целый ряд органических сообществ, групп видов и отдельные виды определенным образом реагируют на различные антропогенные нагрузки. Степень реагирования живых экосистем на антропогенную нагрузку носит название биоиндикации. Функции индикатора выполняют тот вид, особь или группы особей, которые имеют узкую амплитуду экологической толерантности по отношению к какому-либо фактору.

Индикация экологических условий проводится на основе оценки состояния видового разнообразия, которая отражает их способность накапливать химические элементы и соединения, поступающие из окружающей среды. Причем при растущей загрязненности мест обитания одни виды растений и животных могут исчезать из биоценоза (майский жук, лишайники в промышленно развитых областях) или, наоборот, увеличивать свою численность (сине-зеленые водоросли).

Биоиндикация - составная часть экологического мониторинга (от лат. «монитор» - напоминающий, надзирающий), который является системой наблюдения и контроля за состоянием окружающей среды на определенной территории. Это осуществляется в целях рационального использования природных ресурсов и охраны природы.

Экологический мониторинг основывается на определении содержания загрязняющих веществ в воздушной, водной или почвенной среде. Составная часть экологического мониторинга - биологический, тест-объектами которого служат живые организмы и их сообщества.

Рост загрязняющих веществ в воздушной, водной и геологических средах может быть как природным фактором, так и обусловленным антропогенной деятельностью.

В воздушной и водной средах загрязняющие вещества вызывают закупорку и разъедание газами тканей и органов дыхания животных и растений. Неблагоприятные факторы среды приводят к нарушению формообразовательных процессов, угнетению роста, цветения и плодоношения у растений. Но степень восприимчивости растений и животных к загрязнению окружающей среды зависит от видовой принадлежности.

Считается, что биоиндикация более точно отражает экологическую ситуацию, чем непосредственные инструментальные наблюдения и измерения.

Растения часто используют в качестве тест-индикаторов загрязнения окружающей среды, особенно при выбросах веществ, содержащих серу и тяжелые , которые начинают накапливаться в ассимиляционных органах. В зависимости от технологических процессов на промышленных предприятиях, от которых зависит химический состав аэрозольных и газовых выбросов в воздушный бассейн, используют различные виды растений и применяют разнообразные методы исследований - от экспериментов в специальных камерах с заданным составом воздуха до тонких физико-химических методов анализа. Важным является и определение химического состава коры хвойных деревьев, которая поглощает примеси и пыль, находящиеся в атмосферном воздухе.

В наибольшей степени чувствительны к атмосферному загрязнению низшие растения, в частности лишайники. Их использование в экологическом мониторинге носит название лихеноиндикации. Чувствительность низших растений к антропогенным выбросам известна с середины XIX в., но их стали использовать в качестве биоиндикаторов только со второй половины XX в. Исследования, проведенные в Канаде, Великобритании и Скандинавских странах, показали прямую связь состояния лишайников и степень концентрации в них загрязняющих веществ, в частности тяжелых металлов и диоксидов серы с уровнем загрязненности воздушной среды. Среди лишайников встречаются виды с разной чувствительностью к атмосферному загрязнению, но большинство видов отличается высоким уровнем чувствительности, в сотни раз превышающим чувствительность животных и людей.

Исходя из уровня загрязнения воздушной среды, установленного по различным видам лишайников, составляют специальные карты, на которых показывают разную степень загрязненности воздуха. Нередко на таких картах, построенных для территорий с высоким уровнем развития промышленности, отражают территории, полностью лишенные лишайниковой растительности: некоторые районы Кольского полуострова, Норильска и т. д.

Биоиндикационные исследования в системе экологического мониторинга позволяют проследить пространственное распределение многих вредных для здоровья населения и природной среды веществ на фоне общего загрязнения территории в целом. Полученные значения концентрации тех или иных веществ в конкретных экосистемах могут быть использованы в моделировании и прогнозировании загрязнения и в оценке его экологических последствий при глобальном, региональном и локальном уровнях поступления вредных веществ в окружающую среду.

Индикаторами загрязнения водной среды могут служит как водоросли и макрофиты, так и отдельные животные, в частности рачки, раки, креветки, крабы. Эвтрофикация воды в результате интенсивного размножения сине-зеленых и зеленых водорослей является следствием поступления в водоемы большого объема биогенных веществ и служит характерным предупреждением начавшегося загрязнения водоема.

Вместе с тем водные и наземные растения обладают уникальной фильтрующей способностью. Они поглощают из воздуха и нейтрализуют в тканях значительное количество вредных компонентов, поступающих в воздушный бассейн от теплоэнергетических объектов, промышленных предприятий, транспорта и сельского хозяйства. В водной среде растения выполняют средообразующие функции. Среди них важными являются фильтрационная функция, с помощью которой задерживаются и осаждаются различные механические примеси, осуществляются переработка и усвоение органических веществ; поглотительно-накопительная, когда происходит накопление минеральных соединений, в том числе и радиогенных, и детоксикационная, благодаря которой некоторые виды водных растений в процессе своей жизнедеятельности осуществляют детоксикацию вредных загрязнителей, тем или иным путем поступающих в водоемы.

Неустойчивая биосфера и устойчивое развитие

В течение последних десятилетий учеными разных направлений весьма интенсивно исследуются глобальные процессы, вызванные нарушением биогеохимических циклов, вторжением в климатическую систему и сокращением биоразнообразия в результате антропогенной деятельности. Это, так же как и проблемы лавинообразного прироста численности населения, дефицит продовольствия, голод и недостаток чистой питьевой воды со всей неотвратимостью поднимают вопрос о емкости биосферы и способности систем жизнеобеспечения продолжать выполнять свои функции в условиях растущего антропогенного пресса.

Как известно, прямые и обратные связи поддерживают гомеостаз. Это означает, что планетная биота управляет связями между атмосферой, Мировым океаном и верхней частью литосферы. Этим она поддерживает и сохраняет стабильность потоков вещества и энергии в биосфере. Гомеостаз имеет место только при определенном высоком уровне поглощения планетарной биотой солнечной энергии, возможен только при отсутствии экстремальных космических и планетарных воздействий на биосферу. Он основан на связях, разрушение которых носит триггерный характер. Это означает, что живая природа и многие биокосные образования, поддерживающие гомеостатичность биосферы, оказываются хрупкими, спонтанно разрушающимися в ходе нарушения экологического баланса силами органической природы. Дестабилизация биосферы возможна в результате воздействия трех сил: космической, геологической и антропогенной.

В результате исследований биосферы с точки зрения природной системы, осуществленной Г. Лавлоком (1982), который конкретизировал и несколько видоизменил представления В.И.Вернадского об организованности биосферы, а также В. Г. Горшкова (1995), который математически выразил идею Г. Лавлока о гомеостазе глобальной экосистемы, можно констатировать:

естественная биота Земли устроена таким образом, что она способна с высочайшей точностью поддерживать пригодное для жизни состояние окружающей среды;

огромная мощность продукции, достигнутая биотой, позволяет ей восстанавливать любые естественные нарушения окружающей среды в кратчайшие сроки, измеряемые десятками лет;

огромная мощность, развиваемая биотой Земли, таит в себе скрытую опасность быстрого разрушения окружающей среды за десятки лет, если целостность биоты будет нарушена. При этом установлено, что широкомасштабное окультуривание ландшафтов опаснее образования антропогенных пустынь;

биосфера в определенной степени способна компенсировать любые возмущения, производимые человечеством, но только в том случае, если доля его потребления не превышает 1% продукции биосферы;

современные изменения биосферы человеком, ведущие к выбросу биотой 2,3 млрд. т/год углерода в атмосферу, свидетельствуют о переходе ее в неустойчивое состояние, о сильном нарушении глобальных биогеохимических циклов и о существенном подавлении дестабилизирующего равновесного состояния процессов ее естественного саморегулирования;

современное состояние биосферы в определенной степени обратимо. Она способна вернуться в прежнее состояние, имевшее место в прошлом веке, но для этого необходимо на порядок снизить потребление ее естественной продукции;

другого устойчивого состояния биосферы не существует, и при сохранении или росте степени антропогенной нагрузки устойчивость окружающей среды будет нарушена и биосфера начнет разрушаться;

из-за инерционности демографических процессов рост населения Земли до 8 млрд. чел. неизбежен. Однако после стабилизации на этом уровне необходимо почти на порядок снизить число людей на планете путем планирования семьи, и только в этом случае дестабилизированная биосфера возвратится в устойчивое состояние саморегулирования в соответствии с принципом Ле Шателье, так как отторжение человеком ее продукции не будет превышать 1% (К. С. Лосев и др., 1993).

Таким образом, ведущие экологи однозначно свидетельствуют о том, что стихийно развивающаяся цивилизация вплотную подошла к порогу устойчивости биосферы. Главная опасность заключается в том, что антропогенные воздействия привели к нарушению процессов саморегулирования биогеохимических циклов. Поэтому человечество оказалось перед экологическим императивом: либо восстановление дикой природы на уровне XIX в. или даже несколько более ранних времен, либо конец света. Третьего не дано. Согласно В. Г. Горшкову, биосфера гомеостатична только в рамках условий дотехногенного голоцена и ей не свойственны другие устойчивые состояния. Однако этот вывод, сделанный на основе прямого применения метода актуализма, требует определенных корректив. Вся история биосферы, начиная с самых ранних этапов ее возникновения и развития, - это непрерывная череда гомеостазисов и бифуркаций-катастроф (кризисов и революций).

До наших дней биосфера прошла сложный и нелегкий путь усложнения и ускорения. На ее долю выпадали самые разнообразные катастрофы, начиная от крупнейших космических и планетарных до региональных и локальных. Их развитие нередко ставило биосферу на грань самоуничтожения и полного распада. Однако каждый раз благодаря внутренней энергии биосфера с честью выходила из сложнейших ситуаций, и вновь возрождалась жизнь. Такие случаи в геологической истории многочисленны. Ярким примером может служить глобальный кризис биосферы, который произошел 65 млн. лет назад. В результате столкновения Земли с крупным космическим телом (астероидом) возникла экологическая катастрофа. Изменились газовый состав атмосферы и температуры приземной части воздуха и морских акваторий, на просторах суши начались масштабные лесные пожары и т. д. Взрыв космического тела массой в несколько сотен миллиардов тонн и диаметром около 10 км сначала вызвал значительный подъем приземных температур в результате пожаров, а затем - похолодание, похожее на «ядерную зиму».

Нарушение природного баланса было настолько значительно, что привело к гибели крупных наземных позвоночных, в том числе и динозавров. Органический мир Земли лишился почти всего лесного покрова. Исчезли все головоногие моллюски (аммониты и белемниты), все семейства планктонных организмов, кораллов и мшанок, 75% семейств брахиопод, такое же количество двустворчатых и брюхоногих моллюсков и других организмов. Однако через сравнительно недолгое время, спустя 3-5 млн. лет, органическая жизнь на Земле возродилась.

Между тем эта космическая катастрофа была все же не самой крупной в истории Земли. В течение последних 800 млн лет геологической истории подобных космических катастроф насчитывается 21. Это не только прямые удары и взрывы астероидов, но падения комет или их пролеты вблизи Земли. Все это фиксируется в истории развития органического мира и отмечено крупными рубежами геохронологической шкалы. Не упади на Землю астероид 65 млн. лет, не произойди в это время космическая бомбардировка, неизвестно, сколько миллионов лет могла продлиться эпоха жизни динозавров. А ведь экологическую нишу динозавров после их исчезновения заняли млекопитающие, эволюция которых привела к появлению Homo sapiens и к тому, что в настоящее время происходит с биосферой.

Среди планетарных процессов надо отметить региональные по масштабам и глобальные по степени воздействия вулканические извержения, гигантские процессы столкновения литосферных плит и такие скромные по сравнению с ними процессы, как великие оледенения и межледниковья. Правда смена ледниковых периодов межледниковьями, так же как и резкие понижения температур, вызвавшие появления оледенений, могли быть результатом космических причин, в частности связанных с прилетом комет, и с астрономическими циклами.

Связь четвертичных ледниковых эпох и межледниковий с астрономическими циклами М. Миланковича в настоящее время общепризнанна. Этот ученый связывает наступление ледниковых эпох с изменениями трех параметров земной орбиты: эксцентриситета, т. е. степени отклонения орбиты от круговой, наклона земной оси (угла между осью и перпендикуляром к плоскости орбиты) и времени прохождения Землей перигелия, т. е. моментом наиболее близкого расположения Земли от Солнца. На каждый из перечисленных параметров влияет притяжение Луны и других планет. Эксцентриситет достигает максимальных значений через каждые 92 тыс. лет, циклы колебаний наклона земной оси и времени прохождения перигелия периодически повторяются через каждые 41 тыс. и 21 тыс. лет соответственно.

Конечным результатом изменений положения Земли на орбите по отношению к являются циклические изменения летней инсоляции в высоких широтах в условиях относительного постоянства радиационного баланса в целом. В высоких широтах такого изменения достаточно для существенного снижения среднегодовых температур, которые влекут за собой появление и саморазвитие ледниковых покровов на равнинах и плоскогорьях и горных ледников. В свою очередь, такие огромные по масштабам изменения напрямую дестабилизируют биосферу, которая каждый раз прилагает огромные усилия по дополнительному расходу энергии и вещества для того, чтобы вначале приспособиться к возникающим непривычным обстановкам, а затем выйти из создавшихся кризисных или критических ситуаций.

В геологической истории Земли гляциоэры разной продолжительности происходили по крайней мере шесть раз, и каждый раз рост криосферы суживал развитие биосферы и нарушал ее гомеостаз. Нарушался не только температурный режим земной поверхности, который вызывал миграции или изменения в образе жизни животных и растений. Он приводил в том числе и к существенному сокращению биомассы, а значит, нарушал биологический круговорот веществ. Нарушался и гидрологический цикл. В ледниковые эпохи снижался влагообмен между океаном и атмосферой, падало содержание влаги в атмосфере, а значит сокращалась составляющая парникового эффекта. Вследствие развития криосферы на значительных площадях существенно увеличивалось альбедо земной поверхности и снижался радиационный баланс, а все это еще больше усиливало эффект выхолаживания планеты.

Активный вулканизм, особенно при значительном выбросе пирокластического материала в атмосферу, определенным образом снижал альбедо атмосферы, но выброс значительных количеств углекислоты, наоборот, способствовал усилению парникового эффекта.

Как в случае отрицательного (выхолаживание), так и положительного развития планетарных событий, когда появлялось большое число благоприятных для жизнедеятельности организмов ландшафтов, биосфера успешно справлялась с возникавшими трудностями и продолжала развиваться.

Однако совершенно другой сценарий возможен при антропогенном воздействии, если фактором деструкции станет криогенно-гляциальное воздействие, вызванное человеком. Оно может возникнуть при ядерном конфликте и масштабном использовании ядерных устройств. Это вызывает явление, описанное как «ядерная зима». В этом случае нарушится энергообеспеченность Земли, а криосфера получит планетарное распространение, т.е. Земля может превратиться в новую ледяную планету.

Сравнения современных условий с палеогеографическими, т. е. с физико-географическими условиями геологического прошлого, свидетельствуют о том, что современная дестабилизация биосферы хотя и уникальна по происхождению, но далеко не первая. Однако это вовсе не означает, что биосфера даже в ее современном состоянии способна перенести еще более серьезные воздействия со стороны современной цивилизации.

Современная ситуация необычайна еще и тем, что она накладывается на условия природного гомеостаза в биосфере, и поэтому ее развитие может считаться однонаправленным. Явления как дестабилизирующего, так и благоприятно развивающегося характера дают некоторую стабилизацию в развитии, но главное заключается в том, какие явления пересилят.

В современной биосфере экологические ресурсы восстанавливаются не полностью. Однако биосфера обладает еще одним уникальным качеством. Находясь в дестабилизированном состоянии, она не полностью утрачивает свои экологические функции. Живое вещество способно аккумулировать рассеиваемую неорганическими источниками энергию и при этом перераспределять ее вновь в окружающее пространство таким образом, что косная среда, в основном неорганическая, превращается в фактор прогрессивного увеличения функционального и статического потенциала живой природы. Работая на себя, живое вещество меняет действие процессов в неживой природе (С. П. Горшков, 1998). Таким образом, в биосфере происходят процессы, восстанавливающие гомеостаз.

Со времени своего возникновения биосфера постоянно взаимодействует с Космосом. Это взаимодействие вытекает из длительности развития биосферы, которая существует на Земле почти 4 млрд. лет, и постоянного увеличения биоразнообразия и биологических функций живого вещества.

Эти два фактора свидетельствуют об удивительной устойчивости биосферы, об определенной ограниченности масштабов воздействия на биосферу неорганической природы, об ускорении космического воздействия на биосферу, по крайней мере в течение фанерозойской истории. По мнению ведущих экологов, для выработки научно обоснованной стратегии устойчивого развития и оптимальных условий выживания человечества необходимо установить следующие приоритеты (С. П. Горшков, 1998):

высший - эколого-экономическая оптимизация природно-антропогенных и антропогенных систем. От успехов реализации высшего приоритета зависит и решение демографической проблемы; высокий - охрана природных систем и биоразнообразия. В условиях сочетания демографического, социально-экономического и экологического кризисов должны быть более приоритетными цели, защищающие человека и природу одновременно.

Предметом физической географии является географическая оболочка, или ландшафтная сфера, поскольку она представляет собой полый шар (точнее эллипсоид вращения), а ландшафтная — потому, что она состоит из ландшафтов или из ландшафта, понимаемого как совокупность земной коры, водной оболочки (гидросферы), нижней части воздушной оболочки (тропосферы) и населяющих их организмов. Географическая оболочка обладает большой степенью единства; она получает энергию как от Солнца, так и из внутриземных источников — радиоактивных элементов, содержащихся в земной коре. Все виды вещества и энергии проникают друг в друга и взаимодействуют. Жизнь в ее естественных проявлениях (поэтому космонавты — не в счет) возможна на Земле только в пределах географической оболочки, только она одна отличается означенными выше свойствами, а другие сферы Земли, лежащие как внутри ее, так и снаружи, ими не обладают.

Географическая оболочка (ландшафтная сфера) — очень тонкая пленка, но значение ее для человека неизмеримо велико. Он в ней родился, совершенствовался, достиг почетного звания «царя природы» и еще сравнительно до недавнего времени никогда не выходил из ее пределов. Поэтому естественно, что ландшафтную сферу люди должны знать особенно хорошо и посвящают ей особую науку — ф и з и ч е с к у ю географию. Они должны знать ее всю целиком, в основных ее проявлениях, в общих закономерностях, разнообразии, всех местных сочетаний условий, всех форм, которые она принимает, т. е., все типы ландшафта. Поэтому физическая география и делится на две части — общее землеведение и ландшафтоведение.

Границу между двумя частями физической географии нельзя провести точно, есть промежуточные области науки, которые можно отнести как к одной, так и к другой.

Общее землеведение и ландшафтоведение— это и есть то ядро физической географии, которое осталось после отделения от "нее частных или отраслевых наук.

Д.Л. Арманд (1968) понимал недоумение геологов о том, как геологию, имеющую бóльшее значение для народного хозяйства, чем все вместе взятые географические науки, записать в географические науки. Действительно, практическое значение геологии очень значимо и она может быть самостоятельной наукой, но по законам логики и систематики она все же остается наукой географической, поскольку изучает земную кору, а земная кора — одна из четырех геосфер, входящих в ландшафтную сферу (географическую оболочку) и является предметом физической географии. Купить лодки надувные , каркасные и всё необходимое оборудование для лодок, вы сможете на сайте moto-mir.ru. Также же имеется возможность выбора техники бывшего употребления.

Также объяснимо и возможное недоумение со стороны географов-стравоведов (или «физических страноведов»). Их науки вообще нет в этой схеме. Описывая «страны», т. е. государства, или их административные части, они вынуждены укладываться в границы, чуждые природе, искусственные, постоянно меняющиеся. Они делают полезное дело для учебного процесса, для справочных изданий, для туризма, где настоятельно необходимы описания именно в государственных границах. Но сделать научные обобщения применительно к какой-либо стране, разделяющей на части горы и равнины, среди которых она расположена, — это нелогично, исходя из общности развития компонентов географической среды. Иначе обстоит дело в экономической географии. С точки зрения экономико-географа, государственные границы представляют собой реальные рубежи различных экономических систем. Поэтому экономическое страноведение безусловно является закономерной отраслью науки.

Требует ясности также и вопрос о внешних границах физической географии, собственно — о ее «спорных» границах с геофизикой и геохимией. Во-первых, с пространственной точки зрения эти науки изучают весь земной шар, простирающийся и во вне и внутрь неизмеримо дальше тонкого слоя, на который распространяется физическая география. Во-вторых, в пределах этого слоя физическая география рассматривает как живую, так и мертвую природу, в то время как геофизика и геохимия в основном ограничиваются последней. В-третьих, геофизика и в меньшей степени геохимия соответственно изучают общие физические и химические явления независимо от места и времени, в которых они проявились, а физическая география интересуется именно данным местом и временем и особым отпечатком, который накладывают на них конкретные сочетания местных условий. Конечно, находятся геофизики и геохимики, которые, переходя границу, разрабатывают чисто географические проблемы, за что мы, географы, должны быть им только благодарны. В принципе так же (за исключением первого пункта) решается и вопрос о границе географии и биологии. Только, разумеется, биология решает исключительно вопросы живой и неживой природы совместно.

В ряде наук, изучающих вложенные друг в друга материальные системы, физическая география твердо нашла свое место. Этот ряд (разделяя астрономию на три науки, из которых она состоит) имеет следующий вид:

Не раз ставился вопрос о принятии в состав географических наук астрогеографию (или планетологию). Оба эти названия по Д.Л. Арманду (1988) неудачны. Первое потому, что речь вовсе не о звездах, второе — потому, что планетологией разумно назвать науку, аналогичную геологии, изучающую недра, твердые тела планет. А науку, аналогичную географии, следовало бы назвать «планетографией», памятуя при этом, что ее задачи не сводятся к одному лишь описанию, но к всестороннему изучению ландшафтных сфер планет, так же как задачи географий давно уже не сводятся к описанию Земли.

Планетография распадается на лунографию, марсографию и т. д., хотя почему-то их называют селенологией, ареологией и т. д., применяя греческие названия к планетам, которые на европейских языках носят названия, происходящие от латинских корней. Но как бы они ни назывались, изучение ландшафтных сфер планет —это такая грандиозная задача, что она, конечно, заслуживает быть выделенной в отдельную науку. Хотя, несомненно, именно географы будут первыми поставщиками кадров лунографов, по крайней мере до тех пор, пока в наших вузах не будут созданы лунографические факультеты.

Несомненно также, что и краеведение имеет отношение ко всем отраслям географии, но также оно имеет отношение и к этнографии, истории, археологии. Такой широкий фронт интересов мешает ему подняться до уровня настоящей науки, сохраняя за ним очень важное «звание» общественного движения и очень нужную задачу популяризации знаний. Участие в краеведческом движении, в его географической части — прекрасная прикладная область работы географов.

Не смотря на общность характеристик, различие между географической оболочкой и ландшафтной сферой существует.

Географическая оболочка представляет сравнительно мощную (20-35 км) зону взаимопроникновения и взаимодействия литосферы, атмосферы и гидросферы, характеризующуюся проявлениями органической жизни. Изучением географической оболочки Земли, её структуры и развития занимается физическая география. Ландшафтная сфера — это ограниченная по вертикали (от нескольких до 200-300 м) зона прямого соприкосновения и активного взаимодействия литосферы, атмосферу и гидросферы, совпадающая с биологическим фокусом географической оболочки. На океанах ландшафтная сфера приобретает двухъярусное строение. Изучением ландшафтной сферы Земли занимается особая наука — ландшафтоведение. Ландшафтоведение принадлежит к числу частных физико-географических наук, аналогичных геоморфологии, климатологии и гидрологии, и не является синонимом региональной географии.

Географическая среда — та часть ландшафтной оболочки Земли, внутри которой возникла и развивается жизнь человеческого общества (Анучин, 1960).

Элементы взаимопроникновения и взаимодействия атмосферы, гидросферы и литосферы, как и проявления органической жизни, свойственны всей толще географической оболочки, однако непосредственное, прямое соприкосновение их, сопровождающееся вспышкой жизненных процессов, присуще только одной ландшафтной сфере.

Ландшафтная сфера — это совокупность ландшафтных комплексов, выстилающих сушу и океаны. В отличие от географической оболочки, ландшафтная сфера имеет небольшую мощность — не свыше нескольких сот метров. В ландшафтную сферу входят: современная кора выветривания, почва, растительность, животные организмы и приземные слои воздуха. В результате прямого соприкосновения и активного взаимодействия атмосферы, литосферы и гидросферы здесь образуются специфические природные комплексы - ландшафты.

Мощность ландшафтной сферы Земли оценивается по-разному, но едино мнение, что она возрастает от полюсов к экватору. С одной точки зрения, В тундре и арктических пустынях ее мощность в среднем не выходит за пределы 5-10 м под влажными гилеями, где идет на глубину 50-60 м, а над поверхностью почвы на такую же высоту и более поднимается древесный полог, мощность ландшафтной сферы достигает 100- 150 м. В этом возрастании мощности от полюсов к экватору есть известная аналогия между ландшафтной сферой и географической оболочкой Земли.

С другой точки зрения, верхней границей ладшафтной сферы (как предмета физической географии), является тропопауза — поверхность соприкосновения тропосферы со стратосферой. В слоях, лежащих ниже тропопаузы, состав воздуха постоянный, температура в общем падает с высотой, здесь дуют переменные ветры, располагаются облака водяного пара и происходит подавляющее большинство метеорологических явлений. Всего этого нет выше, в стратосфере и ионосфере. Тропопауза лежит на высоте от

9 км (близ полюсов) до 17 км (у экватора) над уровнем океана.

Соответственно, за нижнюю границу ландшафтной сферы принимается внутренняя граница земной коры, так называемый предел (граница) Мохоровичича. Выше него происходят процессы перемешивания земной толщи в ходе горообразования, циркулируют ювенильные (происходящие из глубинных пород) воды, образуются местные очаги расплавов, дающие начало большей части вулканов, и очаги местных землетрясений. Раздел Мохоровичича — пластичная зона, в ней вещество Земли пребывает в вязком состоянии и гасятся внешние возмущения, за исключением продольных волн землетрясений. Предел Мохоровичича находится на глубинах от

3 км (под океанами) до 77 км (под горными системами).

Своеобразный двухъярусный вариант ландшафтной сферы возникает в Мировом океане, где нет условий для прямого соприкосновения и активного взаимодействия сразу всех четырех основных оболочек Земли: литосферы, атмосферы, гидросферы и биосферы. В океане наблюдается прямое взаимодействие лишь трех геосфер и, причем, в отличие от суши, - в двух разобщенных по вертикали местах: на поверхности океана (атмосферы с гидросферой и биосферой) и его дне (гидросферы с литосферой и биосферой). Тем не менее, элементы литосферы присутствуют и на поверхности океана в виде растворенных и взвешенных частиц.

В итоге взаимодействия гидросферы с атмосферой и биосферой верхние слои воды в Мировом океане насыщены газами атмосферы и пронизаны солнечным светом, что создает на поверхности океанов благоприятные условия для развития жизни. Поглощение солнечного света и особенно красной части его спектра, необходимой для фотосинтеза, происходит в морской воде сравнительно быстро, вследствие чего даже в морях, отличающихся прозрачной водой, растительные организмы исчезают на глубинах 150-200 м, а глубже обитают микроорганизмы и животные, для которых вышележащий слой фитопланктона служит основным источником питания. Именно этот нижний предел фотосинтеза и следует считать нижней границей поверхностного яруса ландшафтной сферы в океанах.

Нижний, донный ярус ландшафтной сферы в океанах формируется даже в глубоководных впадинах и желобах. В жизненных процессах нижнего яруса ландшафтной сферы океанов исключительно большую роль играют бактерии, обладающие огромной биохимической энергией.

По окраинам океанов, в пределах материковой отмели и в верхней части материкового склона, верхний и нижний ярусы ландшафтной сферы сливаются между собой, образуя одну ландшафтную сферу, насыщенную органической жизнью.

Ландшафтная сфера составляет предмет изучения особой физико-географической науки - ландшафтоведения, которая стоит в одном ряду с частными физико-географическими науками (гидрологией, климатологией, геоморфологией, биогеографией). Все они объектом изучения имеют отдельные компоненты - слагаемые географической оболочки: гидросферу, атмосферу, ландшафтную сферу, рельеф, органический мир. Поэтому нельзя согласиться с широкораспространенным мнением о том, что ландшафтоведение представляет собой синоним региональной (частной) физической географии.

Степень изменчивости природных компонентов ландшафтов во времени различна. Наибольшей консервативностью отличается литогенная основа, особенно ее геологический фундамент, наиболее крупные черты рельефа — геотекстуры, обязанные своим происхождением силам общепланетарного (космического) масштаба, и морфоструктуры, возникшие в результате взаимодействия эндогенных и экзогенных сил, при ведущей роли первых — движений земной коры. Морфоскульптурные черты рельефа, обязанные своим происхождением экзогенным процессам, взаимодействующим с другими рельефообразующими факторами, подвержены значительно более быстрым изменениям. Быстрой изменчивостью во времени обладают также климат, почва и особенно биоценозы. Современный облик этих компонентов — результат событий в основном последней геологической эпохи.

Особенности ландшафтной сферы

Ландшафтная Сфера обладает еще одной характерной чертой — сложной и подвижной структурой: и толщи земной коры, и воды океана, и воздушные массы постоянно изменяются в пространстве и времени. К тому же в органическом мире (царство растений и царство животных) наблюдаются проявления самой сложной материи — живой. Вещество в пределах ландшафтной сферы отличается крайним разнообразием, множество химических соединений существует в этой тонкой пленке в самых критических условиях температуры и давления. Выше и ниже ландшафтной сферы наблюдается другая картина: однородные массы и условия простираются здесь на больших пространствах, границы их немногочисленны и постепенны.

Хотя в ландшафтной сфере твердые, жидкие и газообразные тела довольно резко разделены, они все время проникают друг в друга: пыль и водяные пары насыщают атмосферу, грунтовые и ювенильные-воды и воздух пронизывают земную кору, наносы, растворенные твердые вещества и тот же воздух содержатся в воде всех океанов. И во все сферы проникает жизнь. Недаром А.А. Григорьев назвал ландшафтную сферу «сферой взаимодействия атмосферы, литосферы, гидросферы, биосферы, радиации и других категорий энергии...».

Что касается энергии, то основных ее видов два: электромагнитная (лучистая) энергия Солнца, притекающая на внешнюю границу Земли с интенсивностью 2 кал/см 2 мин, и энергия радиоактивного излучения горных пород, слагающих земную кору, поток которой через поверхность суши и океанов, направленный вверх, достигает 0,0001 кал/см 2 мин. Как видим, второй поток исключительно мал по сравнению с первым, но проявления внутренней энергии Земли велики и сравнимы с деятельностью солнечной энергии. Все дело в условиях, в которых энергия выделяется. Внутриземная энергия, выделяющаяся в виде тепла в толще массивных горных пород, производит в них коренные изменения. Она расплавляет одни, заставляет расширяться другие, а так как их сдавливают лежащие выше слои, то они изгибаются, образуют складки, вспучиваются, иногда медленно, на протяжении миллионов лет, иногда бурно, разряжая внутренние напряжения разрушительными землетрясениями. При этом они создают рельеф земной поверхности, материки и океаны, горы и тектонические впадины. Они почти всегда работают против силы тяжести, вздымая на километры триллионы тонн горных пород.

Лучистая энергия по самой своей природе не способна непосредственно проникать в непрозрачные среды. Поэтому она входит в твердую земную кору только на глубину до

20 м, благодаря теплопроводности горных пород, а глубже — вместе с погребенными горючими ископаемыми. На поверхности Земли она нагревает массы воды и воздуха, которые при этом всплывают в верхние слои, вызывая, в свою очередь, приходящие им на смену течения в атмосфере и океане. Эти течения в виде ветра, морского прибоя и увлекаемых с воздушными потоками и вновь низвергаемых осадков постоянно обтачивают, обрабатывают земную кору. Их усилия всегда выражаются в денудации этой последней, т. е. сглаживании, сполаживании гор, заполнении и заилении котловин и океанов. Работая всегда в направлении силы тяжести, они стремятся придать Земле однообразную форму сфероида вращения.

Но тектонические движения вновь и вновь нарушают ровную поверхность, не давая солнечной энергии довести до конца ее работу. Причем внутренние (эндогенные) силы поднимают земную кору большими массами, не нарушая цельности ее дневной поверхности (за исключением, правда, вулканов), а внешние (экзогенные) стремятся нивелировать, все время обновляя эту поверхность.

На Земле есть и другие источники энергии: энергия приливов — преобразованная энергия вращения Земли в поле тяготения Луны и Солнца, которая, постоянно расходуясь, замедляет это вращение, энергия опускания наиболее тяжелых горных пород к центру Земли, энергия экзотермических (выделяющих тепло) химических реакций, которая действует вместе с радиоактивным распадом, и некоторые другие, не играющие большой роли.

В течение XX века уточнялись наши представления о распределении тепла по поверхности Земли. Трудами В.В. Докучаева, А.И. Воейкова и Л.С. Берга не только была приведена воедино картина тепловых поясов зонального строения Земли, но и было объяснено в основном происхождение каждой зоны, связанное с распределением по поверхности шара солнечной энергии и всеобщей циркуляции атмосферы.

Следующее уточнение в теорию зональности внес А.А. Григорьев, обратив внимание на чередование на Земле влажных и сухих зон. Зоны повышенной влажности повторяются в каждом полушарии по три раза. Особенно много осадков выпадает около 70º и 30º, а также близ экватора (рис. 2). А температура от полюса к экватору повышается почти непрерывно. Различные сочетания тепла и влаги обусловливают разные условия развития растительности, причем она развивается тем лучше, тем богаче и обильнее, чем больше соответствие между теплом и влагой, а также чем больше общее количество энергии, получаемой местностью. М.И. Будыко нашел для этой закономерности количественное выражение. Он показал, что процветание растительности зависит от величины радиационного индекса сухости R /Lr , где R — солнечная радиация, r — осадки, L — коэффициент скрытой теплоты испарения. От полюсов к экватору это отношение сначала возрастает (в связи с возрастанием солнечной радиации R ), затем падает (там, где начинается зона повышенных осадков и увеличивается r ), затем снова возрастает до уровня более высокого, чем в предыдущем случае, вновь падает и т. д. При этом там, где отношение меньше единицы, т. е. тепла поступает меньше, чем может испариться (R Lr ), т. е. тепла приходит больше, чем нужно для испарения всей выпадающей воды. Излишек тепла сильно нагревает земную поверхность, наступает царство пустынь. Вместе с растительностью то становится богаче, то вновь угасает и животный мир, сменяются плодородные и скудные почвы, расцветает и беднеет сельское хозяйство. И это повторяется все с большей силой в каждом тепловом поясе по мере приближения к экватору. А.А. Григорьев и М.И. Будыко назвали открытое ими явление «периодическим законом зональности». Конечно, это только схема, и на реаальной Земле многое искажает это простое правило. Таково свойство всех географических законов, которые не так непреложны, как законы физики, и, может быть, поэтому лучше говорить только о географических закономерностях.

А как же обстоит дело с Мировым океаном? Есть.ли там широтная зональность? Тепловые пояса, безусловно, есть, но более дробное деление вряд ли можно означить, зато четко выражена вертикальная ярусность. Жизнь простирается на гораздо большую глубину, чем на суше, причем одни ее формы располагаются над другими. Отчасти подобное положение существует в горах, но там высотные ландшафты помещаются как бы на разных ступенях лестницы и их все же можно изобразить на карте, в то время как морские ландшафты поддаются изображению только на профиле.

Географ И.М. Забелин советует всегда помнить, что ландшафтная сфера (по его терминологии — биогеносфера) трехмерна, поскольку имеет глубину. Он делит ее на объемные, а не площадные единицы; особенно много И.М. Забелин находит их, в море.

К сожалению, объемным районированием океана географы занимаются еще мало, хотя будущее океана, как главного кормильца человечества, подлежащего заботливому сохранению, заслуживает более пристального внимания. Пока же интересы географов относятся преимущественно к суше, которую они делят, т. е. районируют в первом приближении, как двухмерную площадь.

Районирование суши одна из весьма важных задач физической географии в области изучения ландшафта. Простым делением Земли на природные зоны уже нельзя ограничиться, поскольку не все факторы в природе зональны. Например, общие черты рельефа или состав горных пород могут быть одинаковыми на крайнем севере и под экватором. Когда природная зона проходит через горный хребет, все ее свойства меняются. Если горы высоки, она даже может смениться другой природной зоной, которая на равнине проходит в гораздо более высоких широтах. Когда природная зона пересекает песчаные пространства, меняются ее почвы, они становятся супесчаными, меняется растительность, например, еловым лесам приходят на смену сосновые, появляется легкая холмистость — результат образования дюн, весь облик местности становится суше, благодаря тому, что дождевые воды не застаиваются на песке. Словом, мы вступаем в песчаный вариант той же природной зоны. В этом случае говорят, что на зональные факторы наложились азональные. Действие последних также должно быть изучено, а для этого необходимо их сперва нанести на карту. При районировании нужно придерживаться определенного порядка, определяемого соподчинением компонентов (составляющих) ландшафта. Изменение одних компонентов чрезвычайно сильно отзывается на других, наоборот, обратное действие бывает лишь слабым и косвенным. Поэтому не все компоненты имеют в природе равное значение, они разделяются на определяющие (ведущие) и определяемые (ведомые).

В такой примерно ряд можно уложить составляющие ландшафта. Каждый вышележащий элемент этой схемы является определяющим по отношению к нижележащему. Земная кора и атмосфера имеют равные права, потому что каждый из них имеет независимый источник энергии и формируется относительно самостоятельно. Почва помещена в самом низу под животным миром, потому что примерно 9 / 10 последнего составляют низшие организмы, живущие в почве и создающие ее в ходе своего обмена веществ.

При физико-географическом районировании всегда выделяются участки в чем-либо схожие, родственнее по природным условиям. Для любого хозяйственного начинания необходимо знать, на какую территорию можно распространить то или иное мероприятие и где лежат его естественные границы. Физико-географическое районирование необходимо, например, для размещения сельскохозяйственных культур и пород скота по территории страны, для отвода земель под мелиорацию, для отбора лесов, подлежащих рубке, для борьбы с эрозией, для постройки курортов, для выбора районов нового заселения, для научных целей и многого другого. Для каждого мероприятия приходится обращать внимание на свои, особые черты природы. Было бы нелепо выбирать климатические условия для больных туберкулезом по тем же признакам, как и для выращивания арбузов. Поэтому районирование для каждой отдельной цели будет в каждом случае свое.

Некоторые географы думают, что районирование заложено в самой природе, что нужно только внимательно посмотреть, чтобы «заметить» границы. Это — заблуждение, которое основано на естественном стремлении людей схематизировать, упрощать природу. Многие изменения в природе, например, климатические изменения, происходят не резко, а достаточно постепенно. Поэтому так же постепенно изменяются и все зональные признаки: почвы, растительность, зависящие от климата. Рельеф азонален и накладывается на ту зональность самым непредсказуемым (прихотливым) образом. Многие границы его тоже постепенны: например, области отступания ледника или моря. А те грани-цы, которые кажутся резкими, оказываются таковыми лишь в мелком масштабе. При укрупнении карты и они расплываются; например, берега — границы морей — лишь на тех картах изображаются линией, на которых можно пренебречь зоной прилива-отлива. При таких условиях нельзя с уверенностью сказать, где кончается один тип ландшафта и где начинаете» другой, надо ли выделить на местности 5 типов или 7. Чтобы избежать неопределенности, прибегают к количественным признакам. Условливаются, например, выделить в особый тип местности безлесные низменности, покрытые черноземной почвой. Безлесными считать территории, на которых лес занимает не больше 3% площади, низменностями — равнины не выше

200 м над уровнем моря, а черноземами — почвы, содержащие не меньше 4% гумуса. Вот тогда выделенная территория получает определенность и может быть установлена с точностью, которая зависит только от степени ее изученности. Разумеется, это достигается благодаря введенным нами условностям. Если бы мы договорились считать за нижний предел тучности чернозема не 4, а, скажем, 5%, то и граница, проведенная по почвам, и вся карта районирования получилась бы несколько другая. Обычно в качестве предельных цифр выбирают те, которые имеют хозяйственное или иное значение, а если такие неизвестны, то просто круглые цифры.

Как правило, границы для взятых нами признаков не совпадают друг с другом и районировать приходится по ступеням — скажем, сперва отделить низменности от возвышенностей (1-я ступень), потом в пределах низменностей выделить безлесные участки, отделив их от лесов (2-я ступень), потом подразделить по почвам на черноземы, каштановые почвы, солонцы и т. д. (3-я ступень). Проделав эти операции, мы как бы постепенно врастаем в ландшафт. Если объектом районирования является весь Земной шар, то мы идем примерно от определяющих компонентов к определямым. Вначале выделяем пояса, которые обладают единством только в термическом отношении, потом в их пределах — страны, обладающие единством и в термическом и в тектоническом отношении, потом отрезки зон в пределах стран — это единство тепла, влаги и тектоники, затем провинции по геоморфологическим признакам; здесь к числу компонентов, которые стали едиными, присоединяется рельеф, далее—растительность, почвы в т. д., пока не получаем вполне комплексные, ландшафтные единицы.

Таким образом, природа существует объективно, а деление ее — всегда обобщение, производимое человеком, результат деятельности его разума. Это, конечно, не исключает того, что природа местами подсказывает географу, какие типы ландшафта имеет смысл выделять. Когда какая-нибудь местность, относительно однородная, тянется на большое расстояние, то ясно, что она заслуживает выделения в качестве особого типа, имеющего значение для большинства целей, которые могут быть поставлены. Мы тогда можем уверенно нанести на карту очаг или ядро данного типа, а затем уже можем договориться относительно признака, по которому проводим границу между этим и соседними типами.

Однако не все географы поступают, как описано выше. Иногда границы проводят сразу, «по комплексу признаков». Но комплекс — это понятие неопределенное, районирование получается непоследовательным и произволъным, зависящим от наличия у автора интуиции и глазомера.

Другое недоразумение связано с так называемыми «основными» и «наименьшими» таксономическими единицами. Существует представление, что ландшафт Земли подобен полу, выложенному плитками. Они могут быть большие и маленькие, но всегда одного ранга и ложатся точно впритык. Границы более крупных районов, которые объединяют несколько соседних «плиток» и более мелкие, на которые они разбиваются, не столь важны и не столь заметны. При этом ссылаются на аналогию: все организмы построены из клеточек, а химические вещества — из молекул. Существует, кроме того, предел деления, ниже которого географы не опускаются. Они принимают некоторые единицы за далее неделимые и закрывают глаза на существующие в них внутренние различия. Эти представления — опять же упрощение. Сравнение не доказательство, клеточки здесь не подходят. Ландшафтная сфера состоит из земной коры, мирового океана, атмосферы, не имеющих клеточного строения. А если они не имеют его порознь, то тем более не будут иметь вместе, переплетаясь в сложные сочетания, образующие ландшафт. Их переплетения имеют различный размер, степень сложности и выраженности и степень четкости границ. Поэтому на Земле нельзя выделять какую-то «основную» ступень районирования, на карте одинаково важны и крупные и самые мелкие объекты, все они заслуживают изучения и все вместе образуют пестрый ковер, который мы называем ликом Земли.

Что касается наименьших единиц, то части самой маленькой из них всегда отличаются друг от друга по какому-нибудь признаку. На болоте могут быть выделены кочки, окна водной поверхности, участки со своеобразной растительностью, а на склоне балки каждый горизонт отличается от следующего степенью увлажнения, количеством смываемого или намываемого материала. Известный лесовед и ботаник В.Н. Сукачев первоначально считал мельчайшей однородной и неделимой единицей биогеоценоз, а когда изучил его подробнее, пришлось ввести новую единицу — «парцеллу», и таких единиц оказалось в биогеоценозе с десяток или более. Конечно, правы те ученые, которые говорят, что где-то надо остановиться. Но где именно — это опять-таки определяется не самой природой, а только уровнем развития науки и запросами практики, требования которой к детальности изучения природы все возрастают.

Лекция 1. Место ландшафтоведения

Среди наук о Земле. Ландшафтоведение и геоэкология

Место ландшафтоведения среди наук о Земле. Ландшафтоведение и геоэкология.

Соотношение понятий «географическая оболочка», «ландшафтная оболочка, «биосфера».

Определение термина «ландшафт», «природно-территориальный комплекс (ПТК)» и «геосистема».

Экосистема и геосистема.

Ландшафтоведение - часть физической географии, входящая в систему физико-географических наук (общее землеведение, страноведение, палеогеография, частные физико-географические науки), составляющая ядро этой системы.

Ландшафтоведение, объектом изучения которого является ландшафтная сфера, имеет свой ряд ландшафтоведческих наук: общее ландшафтоведение, морфология ландшафтов, геофизика ландшафтов, геохимия ландшафтов, ландшафтное картографирование.

Самую тесную связь ландшафтоведение имеет с частными физико-географическими науками (геоморфологией, климатоло­гией, гидрологией, почвоведением и биогеографией).

Кроме собственных географических дисциплин, к ландшафтоведению близки другие науки о Земле, особенно геология, геофизика и геохимия. Так возникли науки геофизика ландшаф­та (изучает энергетику геосистем) и геохимия ландшафта (изу­чает миграции химических элементов в ландшафте)

Помимо этого ландшафтоведение опирается на фундаментальные природные законы, установленные физикой, химией и биологией.

Разберем последний аспект этой темы - связь ландшафтоведения и геоэкологии. Термин "экология" в буквальном переводе с греческого означает "наука о местообитании". Он был предло­жен еще в 1866 году немецким биологом Эрнстом Геккелем и стал применяться для характеристики взаимоотношения расте­ний и животных с окружающей природной средой. Затем в рам­ках биологии зародилось учение об экологии, которое стало бы­стро развиваться на основе исследования взаимоотношений организмов и среды, сообществ и популяций этих организмов, а с 30-х годов прошлого века - и экосистем как природных ком­плексов, состоящих из совокупности живых организмов и окру­жающей их среды. Несколько позднее, с 50 - 60-х годов XX ве­ка, к экологическим стали относить все проблемы взаимо­отношения человеческого общества и окружающей среды. Экология вышла за рамки биологии и превратилась в межпред­метный комплекс научных направлений. Классическую эколо­гию стали предлагать именовать биоэкологией. Ввиду того, что термин "экология" стал многозначным, прибавление к нему кор­ня "гео" подчеркивает связь с географией. Термин "геоэкология" возник на Западе в 30-х годах прошлого века. Хотя интерес гео­графии к подобной проблематике появился гораздо раньше. Собственно, именно география с самого начала своего возник­новения занималась изучением среды обитания людей, взаимо­отношениями человека и природы.

Из советских географов первым обратил внимание на необ­ходимость исследования взаимосвязей географии и экологии акад. В.Б. Сочава в 1970 году. Постепенно сложилось и совре­менное представление о геоэкологии, как о составной части большого междисциплинарного комплекса экологических про­блем и сферы перекрытия географии и экологии. Геоэкологию можно определить как науку, изучающую необратимые процес­сы и явления в природной среде и биосфере, возникшие в ре­зультате интенсивного антропогенного воздействия, а также близкие и отдаленные во времени последствия этих воздействий.

Исходя из этого определения геоэкологии, ее связь с ландшафтоведением видится прежде всего в следующем. Ландшаф­товедение изучает строение, морфологию, динамику природных ландшафтов, а геоэкология изучает ответную реакцию природ­ных систем на антропогенное воздействие, используя достиже­ния ландшафтоведения. Однако между геоэкологией и ландшафтоведением можно усмотреть и область перекрытия интересов, т.к. помимо природных, в курсе ландшафтоведения изучаются и природно-антропогенные ландшафты, созданные при непосред­ственном участии человека. К настоящему времени учение о геоэкологии нельзя считать сложившимся. Существует еще мно­го неясностей в определении ее задач и границ и в формирова­нии понятийного аппарата.

Соотношение понятий

"географическая оболочка", "ландшафтная оболочка", "биосфера

Термин "географическая оболочка" предложил академик А.А. Григорьев в 30-х годах прошлого века. Географическая оболочка - особая природная система, в которой взаимодейст­вуют и находятся в единстве земная кора, гидросфера, атмосфе­ра и биосфера. При более развернутом определении под геогра­фической оболочкой (ГО) понимают сложную, но упорядо­ченную иерархическую систему, отличающуюся от других оболочек тем, что материальные тела в ней могут находиться в трех агрегатных состояниях - твердом, жидком и газообразном. Физико-географические процессы в этой оболочке протекают под воздействием как солнечной, так и внутренних источников энергии. При этом все виды энергии, поступающие в нее, пре­терпевают трансформацию и частично консервируются. В пре­делах ГО происходит непрерывное и сложное взаимодействие, обмен веществом и энергией. Это относится и к населяющим ее живым организмам. Верхнюю и нижнюю границы географической оболочки разные ученые про­водят по-разному. Согласно наиболее общепринятой точке зре­ния, верхняя граница ГО совпадает с озоновым слоем, располо­женным на высоте 20 - 25 км. Нижнюю границу ГО совмещают с границей Мохоровичича (Мохо), отделяющей земную кору от мантии. Расположена граница Мохо в среднем на глубине 35 -40 км, а под горными массивами - на глубине 70 - 80 км. Таким образом, мощность географической оболочки составляет 50-100 км. Впоследствии были предложения о заменах термина "географическая оболочка". Так, А.Г. Исаченко (1962) предло­жил именовать географическую оболочку эпигеосферой (эпи - поверх), подчеркивая, что это наружная земная оболочка. И.Б. Забелин термином "биогеносфера" подчеркивал ее важнейшую особенность - жизнь в оболочке. Ю.К. Ефремов (1959) предло­жил географическую оболочку называть ландшафтной.

Нами принято, что ландшафтная оболочка (сфера) не тождественна географической, а имеет более узкие рамки. Ландшафтная оболочка (сфера) - наиболее весомая часть географической оболочки находящаяся у земной поверх­ности на контакте атмосферы, литосферы и гидросферы, своеоб­разный фокус сгущения жизни (Ф.Н.Мильков). Ланд­шафтная оболочка представляет собой качественно новое образование, которое нельзя отнести ни к одной из сфер. По сравнению с ГО ландшафтная оболочка очень тонкая. Ее мощ­ность от нескольких десятков метров до 200 - 250 м и зависит от мощности коры выветривания и высоты растительного покрова.

Ландшафтная оболочка играет важную роль в жизни челове­ка. Все продукты органического происхождения человек полу­чает из ландшафтной оболочки. За пределами ландшафтной оболочки человек может находиться только временно (в космо­се, под водой).

С понятием биосферы вы уже знакомы. Основные моменты, касающиеся зарождения, становления этого термина и самого учения о биосфере очень хорошо освещены в пособии Б.В. Пояркова и О.В. Бабаназаровой "Учение о биосфере" (2003). Напомню только, что само слово "биосфера" впервые появилось в трудах Ж.-Б. Ламарка, но он вкладывал в него совсем другой смысл. Термин биосфера связал с живыми организмами австрийский геолог Э. Зюсс в 1875 году. Только 60-х годах прошлого века выдающимся русским ученым В.И. Вернадским было создано стройное учение о биосфере как сфере распространения жизни и особой оболочке нашей планеты.

По В.И. Вернадскому, биосфера - это общепланетарная обо­лочка, та область Земли, где существует или существовала жизнь и которая подверглась и подвергается ее воздействию. Биосфера охватывает всю поверхность суши, всю гидросферу, часть атмосферы и верхнюю часть литосферы. Пространственно биосфера заключена между озоновым слоем (20 - 25 км над поверхностью Земли) и нижним пределом распространения живых организмов в земной коре. Положение нижней границы биосфе­ры (примерно 6 - 7 км в глубь земной коры) менее определенно, чем верхней, т.к. наши знания об области распространения жиз­ни постепенно расширяются и примитивные живые организмы находят на глубинах, где, как предполагалось, их быть не долж­но из-за высоких температур горных пород.

Таким образом, биосфера занимает практически то же про­странство, что и географическая оболочка. И этот факт некото­рыми учеными рассматривается как основание для сомнений в целесообразности существования самого термина "географиче­ская оболочка", были предложения объединить эти два термина в один. Другие ученые считают, что географическая оболочка и биосфера - разные понятия, т.к. в понятии биосфера внимание акцентируется на активной роли живого вещества. Аналогичная ситуация и с ландшафтной оболочкой и биосферой. Многими учеными ландшафтная оболочка рассматривается как равное биосфере понятие.

Несомненно, термин "биосфера" имеет больший вес для ми­ровой науки, используется в различных отраслях знания и зна­ком каждому более или менее образованному человеку в отли­чие от термина "географическая оболочка". Но при изучении дисциплин географического цикла представляется целесообраз­ным использовать оба этих понятия, т.к. термин "географическая оболочка" предполагает равное внимание ко всем сферам, вхо­дящим в ее состав, а при употреблении термина "биосфера" ак­цент изначально делается на изучение живого вещества, что не всегда справедливо.

Важным критерием разделения этих сфер может стать время их возникновения. Сначала возникла географическая оболочка, затем дифференцировалась ландшафтная сфера, после чего био­сфера стала приобретать все большее влияние среди других сфер.

3. Определение терминов "ландшафт",

"природно-территориальный комплекс (ПТК)" и "геосистема"

Термин "ландшафт" имеет широкое международное призна­ние.

Слово "ландшафт" заимствовано из немецкого языка (land -земля, schaft - взаимосвязь). В английском языке это слово обо­значает картину природы, во французском - соответствует слову "пейзаж".

В научную литературу термин "ландшафт" был введен в 1805 году немецким географом А. Гомменером и означал сово­купность обозреваемых из одной точки местностей, заключен­ных между ближайшими горами, лесами и другими частями Земли.

В настоящее время имеется 3 варианта трактовки содержа­ния термина "ландшафт":

1. Ландшафт - общее понятие, аналогичное таким, как поч­ва, рельеф, организм, климат;

2. Ландшафт - реально существующий участок земной по­верхности, географический индивидуум и, следовательно, исход­ная территориальная единица в физико-географическом райони­ровании;

При всех различиях определений ландшафта между ними есть сходство в самом главном - признании ландшафтных взаи­мосвязей между элементами природы в реально существующих на земной поверхности комплексах.

Ландшафт - относительно однородный участок географи­ческой оболочки, отличающийся закономерным сочетанием ее компонентов и явлений, характером взаимосвязей, особенностя­ми сочетания и связей более мелких территориальных единиц (Н.А.Солнцев). Природные компоненты - основные составные части природных систем (от фации до ландшафтной оболочки вклю­чительно), взаимосвязанные между собой процессами обмена веществом, энергией, информацией. Под природными компо­нентами понимают:

1) массы твердой земной коры;

2) массы гидросферы (поверхностные и подземные воды на суше);

3) воздушные массы атмосферы;

4) биоту - сообщества организмов;

Таким образом, ландшафт пятикомпонентен. Часто вместо масс твердой земной коры в качестве компонента называют рельеф, а вместо воздушных масс - климат. Это вполне допус­тимо, но необходимо помнить, что и рельеф, и климат не явля­ются телами материальными. Первое - это внешняя форма зем­ли, а второе - совокупность определенных метеорологических характеристик, зависящих от географического положения терри­тории и особенностей общей циркуляции атмосферы.

Ученому - ландшафтоведу для характеристики ландшафта необходимы сведения из геоморфологии, гидрологии, метеоро­логии, ботаники, почвоведения и др. частных географических дисциплин. Таким образом, ландшафтоведение "работает" на интеграцию географических знаний.

Природно-территориальный комплекс (ПТК) можно опре­делить как пространственно-временную систему географических компонентов, взаимообусловленных в своем размещении и раз­вивающихся как единое целое.

ПТК имеет сложную организацию. Для него характерна вер­тикальная ярусная структура, которую создают компоненты, и горизонтальная, состоящая из природных комплексов более низ­кого ранга.

Во многих случаях термины "ландшафт" и "природно-территориальный комплекс" взаимозаменяемы и являются сино­нимами, но есть и отличия. В частности, термин "ПТК" не ис­пользуется при физико-географическом районировании, т.е. не имеет иерархической и пространственной размерности.

Термин ПТК, в отличие от ландшафта, значительно реже используется как общее понятие.

В 1963 году В.Б. Сочава предложил именовать объекты, изучаемые физической географией, геосистемами. Понятие "гео­система" охватывает весь иерархический ряд природных геогра­фических единств - от географической оболочки до ее элемен­тарных структурных подразделений. Геосистема - более широкое понятие, чем ПТК, т.к. последнее применимо лишь к отдельным частям географической оболочки, ее территориальным подразделениям, но не распространяется на ГО в целом.

Такое соотношение геосистемы и ПТК является следствием того, что понятие системы имеет более широкий характер, чем комплекс.

Система - совокупность элементов, находящихся в отноше­ниях и связях между собой и образующих определенную цело­стность, единство. Целостность системы также называют эмерджентностью.

Всякий комплекс есть система, но не о каждой системе можно сказать, что она представляет собой комплекс.

Чтобы говорить о системе, достаточно иметь хотя бы два объекта, с которыми существуют какие-либо взаимоотношения, например, почва - растительность, атмосфера - гидросфера. Один и тот же объект может участвовать в различных системах. Различные системы могут перекрываться, и в этом проявляется связь различных предметов и явлений. Понятие же "комплекс" (с лат. "сплетение, очень тесное соединение частей целого") пред­полагает не любой, а строго определенный набор взаимосвязан­ных блоков (компонентов). В ПТК должны входить некоторые обязательные компоненты. Отсутствие хотя бы одного из них разрушает комплекс. Достаточно представить себе ПТК без гео­логического фундамента или без почвы. Комплекс может быть только полным, хотя в целях научного исследования можно из­бирательно рассматривать частные связи между компонентами в любых сочетаниях. И если элементы системы могут быть как бы случайными один по отношению к другому, то элементы комплекса, по крайней мере, природно-территориального, должны находиться в генетической связи.

Любой ПТК можно именовать геосистемой. Среди геосистем существует своя иерархия, свои уровни ор­ганизации.

Ф.Н. Мильков различает три уровня организации гео­систем:

1) Планетарный - соответствует географической оболочке.

2) Региональный - физико-географические зоны, секторы, страны, провинции и др.

3) Локальный - относительно простые ПТК, из которых по­строены региональные геосистемы - урочища, фации.

Геосистема и ПТК характеризуются рядом свойств и ка­честв.

Важнейшее свойство любой геосистемы - ее целостность . Из взаимодействия компонентов возникает качественно новое образование, которое не могло бы возникнуть при механическом сложении рельефа, климата, природных вод и т.д. Особое каче­ство геосистем - их способность продуцировать биомассу.

Своеобразным "продуктом" наземных геосистем и одним из ярких проявлений их целостности служит почва. Если бы сол­нечное тепло, вода, материнские породы и живые организмы не взаимодействовали между собой, то никакой почвы бы не было.

Целостность геосистемы проявляется в ее относительной ав­тономности и устойчивости к внешним воздействиям, в наличии объективных естественных границ, упорядоченности структуры, большей тесноте внутренних связей по сравнению с внешними.

Геосистемы относятся к категории открытых систем, это значит, что они пронизаны потоками вещества и энергии, связы­вающими их с внешней средой.

В геосистемах происходит непрерывный обмен и преобразо­вание вещества и энергии. Всю совокупность процессов пере­мещения, обмена и трансформации энергии, вещества, а также информации в геосистеме можно назвать ее функционированием. Функционирование геосистемы слагается из трансформации солнечной энергии, влагооборота, геохимического круговорота, биологического метаболизма и механического перемещения ма­териала под действием силы тяжести.

Структура геосистемы - сложное понятие. Ее определяют как пространственно-временную организацию или как взаимное расположение частей и способы их соединения.

Пространственный аспект структуры геосистемы состоит в упорядоченности взаимного расположения ее частей. Различают структуру вертикальную (или радиальную) и горизонтальную (или латеральную). Но понятие структуры предполагает не про­сто взаимное расположение составных частей, а также способы их соединения. Соответственно, различают две системы внут­ренних связей в ПТК - вертикальную, т.е. межкомпонентную, и горизонтальную, т.е. межсистемную.

Примеры вертикальных системообразующих связей (пото­ков) в геосистеме:

1) Выпадение атмосферных осадков и их фильтрация в поч­ву и грунтовые воды.

2) Взаимосвязь между содержанием химических элементов в почвах и почвенных растворах и в растениях, на них произра­стающих.

3) Осаждение различных взвесей на дне водоема.

Примеры горизонтальных потоков вещества в геосистеме:

1) Водный и твердый сток различных водотоков.

2) Эоловый перенос пыли, аэрозолей, спор, бактерий и т.д.

3) Механическая дифференциация твердого материала вдоль склона.

В понятие структуры геосистемы следует включить и опре­деленный закономерный набор ее состояний, ритмически сме­няющихся в пределах некоторого интервала времени (сезонные изменения). Этот отрезок времени называется характерным временем геосистемы и им является один год: минимальный промежуток, в течение которого можно наблюдать все типичные структурные элементы и состояния геосистемы.

Все пространственные и временные элементы структуры геосистемы составляют ее инвариант. Инвариант - это совокуп­ность устойчивых характерных черт системы, позволяющая от­личить данную систем от всех остальных. Еще короче можно сказать, что инвариант - это каркас или матрица ландшафта (А.Г.Исаченко).

Например, для Среднерусской возвышенности характерен тип урочищ карстовых воронок. Инвариантом этого типа урочиш является его диагностический признак - резко выраженная на местности замкнутая отрицательная форма рельефа в виде конусообразной воронки.

Эти карстовые воронки могут быть образованы в отложени­ях писчего мела или в известняках, могут быть облесены или быть покрыты луговой растительностью. В этих случаях мы имеемразные варианты или разновидности одного и того же инварианта - урочища карстовых воронок.

В процессе функционирования видовые варианты могут сменить друг друга - не заросшая растительностью меловая во­ронка трансформироваться в лугово-степную, а лугово-степная в лесную, инвариант же при этом (карстовая воронка как тако­вая) останется неизменным.

Но при определенных условиях наблюдается и смена инва­рианта. В результате заиления карстовая воронка в одном случае может превратиться в озеро, в другом - в неглубокую степную западину. Но эта смена инварианта означает и смену одного ти­па урочищ другим. У локальных геосистем размерности урочища или фации инвариантом чаще всего явля­ется литогенная основа.

Динамика геосистемы - изменения системы, которые имеют обратимый характер и не приводят к перестройке ее структуры. К динамике относят главным образом циклические изменения, происходящие в рамках одного инварианта (суточные, сезон­ные), а также восстановительные смены состояний, возникаю­щие после нарушения геосистемы внешними факторами (в т.ч. хозяйственной деятельностью человека). Динамические измене­ния говорят об определенной способности геосистемы возвра­щаться к исходному состоянию, т.е. об ее устойчивости. От ди­намики следует отличать эволюционные изменения геосистемы, т.е. развитие. Развитие - направленное (необратимое) измене­ние, приводящее к коренной перестройке структуры, т.е. к появ­лению новой геосистемы. Прогрессивное развитие присуще всем геосистемам. Перестройка локальных ПТК может происходить на глазах человека - зарастание озер, заболачивание лесов, воз­никновение оврагов, осушение болот и т.д.

В процессе своего развития ПТК проходят 3 фазы. Первая фаза - зарождения и становления - характеризуется приспособ­лением живого вещества к субстрату, причем воздействие биоты на субстрат невелико. Вторая фаза - активное и сильное воздей­ствие живого вещества на условия его местообитания. Третья фаза - глубокая трансформация субстрата, приводящая к появ­лению нового ПТК (по К.В. Пашкангу).

Кроме внутренних причин, на развитие ПТК влияют и внешние: космические, общеземные (тектоника, общая циркуля­ция атмосферы) и местные (влияние соседних ПТК). Совокупная деятельность внешних и внутренних факторов приводит в ко­нечном итоге к смене одного ПТК другим.

Большое влияние на ПТК стала оказывать человеческая дея­тельность. Это приводит к тому, что ПТК изменяются, появился даже термин природно-антропогенный комплекс (техногенный комплекс), в котором наряду с природными компонентами появ­ляется общество и явления, связанные с его деятельностью. В настоящее время ПТК нередко рассматривают как сложную сис­тему, состоящую из 2 подсистем: природной и антропогенной.

С развитием идей о воздействии человека на окружающую среду возникла концепция природно-производственной геосис­темы, где сопряженно изучаются природная и производственная составляющие в природно-антропогенных ландшафтах. Здесь человек рассматривается в социальной, культурной, экономиче­ской и техногенной сферах.

Экосистема и геосистема

Одна из особенностей современной географии - ее экологи­зация, особое внимание к изучению проблем взаимодействия че­ловека и природной среды.

Экосистема - любое сообщество живых существ и его среда обитания, объединенные в единое функциональное целое на ос­нове взаимозависимости между отдельными экологическими компонентами. Экосистемы изучаются экологией, входящей в состав дисциплин биологического цикла. Выделяют микроэкосистемы (кочка на болоте), мезоэкосистемы (луг, пруд, лес), макроэкосистемы (океан, континент), есть также глобальная экосистема - биосфера. Часто экосистема рассматривается как синоним биогеоценоза, хотя биогеоценоз - часть биосферы, од­нородная природная система функционально взаимосвязанных живых организмов с абиотической средой.

В результате активной хозяйственной деятельности общест­ва происходят значительные изменения экосистем и превраще­ние их в техногенные (осушенные болота, подтопленные земли, вырубленные леса).

Природная система, изучаемая географией, называется гео­системой - особого рода материальной системой состоящей из природных и социально-экономических компонентов, террито­рии.

Экосистема и геосистема имеют сходства и различия. Сход­ство состоит в одинаковом составе биотических и абиотических компонентов, входящих в обе эти системы.

Различия этих систем выражаются в характере связей. В гео­системе связи между компонентами равнозначные, т.е. в равной степени изучаются рельеф, климат, воды, почва, биота. В экоси­стеме заложена идея о принципиальном неравенстве компонен­тов, входящих в нее. В центре изучения экосистемы раститель­ные и животные сообщества и все связи в экосистеме изучаются по линии растительные и живые сообщества - абиотический компонент природы. Связи между абиотическими компонентами остаются вне поля зрения.

Другое отличие экосистемы от геосистемы состоит в том, что экосистема как бы безразмерна, т.е. не имеет строгого объе­ма. В экосистеме рассматривается и берлога медведя, нора лисы, водоем. При таком широком и неопределенном объеме некото­рые категории экосистем могут не совпадать с геосистемами.

Последнее различие может проявляться в том, что в геосис­теме в отличие от экосистемы появляются новые компоненты, такие как население, хозяйственные объекты и др.

Воздушные массы и климат.

Природные воды и сток.

Урочища и подурочища.

4. Географическая местность как самая крупная морфоло­гическая часть ландшафта.

Планетарный, региональный и локальный уровень геосистем.

Природные системы могут быть образованиями различной размерности, либо очень обширными, сложно устроенными, вплоть до ландшафтной оболочки, либо сравнительно незначи­тельными по площади и более однородными внутренне. Все природные геосистемы по своим размерам и сложности устрой­ства подразделяются на три уровня: планетарные, региональные и локальные.

К планетарному уровню геосистем относится географиче­ская оболочка в целом, материки, океаны и физико-географи­ческие пояса. Так, Шубаев в своей книге по общему землеведению дифференцирует географическую оболочку на материковые и океанские лучи: три материковых - Европейско-Африканский, Азиатско-Австралийский, Американский и три океанских - Ат­лантический, Индийский и Тихоокеанский. Далее он рассматри­вает географические пояса. Другие географы (Д.Л. Арманд, Ф.Н. Мильков) начинают планетарный уровень геосистем счи­тать с ландшафтной оболочки (сферы), далее идут географиче­ские пояса, материки, океаны. Геосистемы планетарного уровня являются сферой научных интересов общего землеведения.

Региональный уровень геосистем включает в себя физико-географические страны, области, провинции, у некоторых географов физико-географические пояса, зоны, подзоны. Все эти единицы изучаются в рамках курсов региональной физической географии и ландшафтоведения.

Локальный уровень геосистем включает в себя природные комплексы, как правило, приуроченные к мезо- и микроформам рельефа (оврагам, балкам, речным долинам) или их элементам (склонам, вершинам, днищам). Из иерархического ряда геосис­тем локального уровня выделяются фации, урочища и местно­сти. Эти геосистемы являются предметом изучения ландшафто­ведения, особенно его раздела, касающегося морфологии ландшафта.

Основным источником получения новой информации о ПТК являются полевые исследования, в центре которых находится ландшафт. Но конкретных индивидуальных ландшафтов на Зем­ле великое множество. По приблизительным подсчетам их об­щее количество должно выражаться пяти- или шестизначной цифрой. Что же сказать о местностях, урочищах, фациях! По­этому, как и всякая другая наука, география не может обойтись без классификации изучаемого объекта. В. настоящее время ши­роко принятой считается такая группировка геосистем, в кото­рой сверху вниз перечисляется несколько геосистемных таксо­нов (рангов) и каждый нижестоящий входит структурным элементом в вышестоящий. Такой способ упорядочивания объ­ектов называется иерархия (от греч. "служебная лестница").

Региональные геосистемы

(физико-географические провинции, области и страны)

Основным объектом изучения в курсе региональной физиче­ской географии является физико-географическая страна. Физико-географическая страна - это обширная часть материка, соответ­ствующая крупной тектонической структуре и достаточно еди­ная в орографическом отношении, характеризующаяся климати­ческим единством (но в широких пределах) - степенью континентальности климата, климатическим режимом, своеоб­разием спектра широтной зональности на равнинах. А в горах - системой типов высотной поясности. Страна занимает площадь в несколько сот тысяч или миллионов квадратных километров. Примерами физико-географических стран Северной Евразии являются Русская равнина. Уральская горная страна, Западно-Сибирская равнина, Альпийско-Карпатская горная страна. Все страны могут объеди­няться в две группы: горные и равнинные.

Следующей географической единицей в иерархии геосистем является физико-географическая область - часть физико-географической страны, обособившаяся главным образом в нео­ген-четвертичное время под влиянием тектонических движений, материковых оледенений, с однотипным рельефом и климатом и своеобразным проявлением горизонтальной зональности и вы­сотной поясности. Примерами физико-географических областей являются Мещерская низменность. Среднерусская возвышен­ность. Окско-Донская низменность, степная зона Русской рав­нины, зона тайги Западно-Сибирской равнины, Кузнецко – Алтайская область.

Далее при районировании территории выделяют физико-географическую провинцию - часть области, характеризующуюся общностью рельефа и геологического строения, а также био­климатическими особенностями. Обычно провинция совпадает с крупной орографической единицей: возвышенностью, низмен­ностью, группой горных хребтов и др. Примеры: Мещерская провинция смешанных лесов Русской равнины, лесостепная провинция Окско-Донской равнины, Салаиро – Кузнецкая провинция.

Физико-географический (ландшафтный) район - сравнитель­но крупная, геоморфологически и климатически обособленная часть провинции, в пределах которой сохраняются целостность и специфика ландшафтной структуры. Каждый район отличается определенным сочетанием форм мезорельефа с характерным для них микроклиматом, почвенными разностями и растительными сообществами. Район является низшей единицей регионального уровня дифференциации географической оболочки. Примеры: Кузнецкая котловина, Салаир, Горная Шория, Кузнецкий Алатау.

При анализе картографических материалов были вычислены примерные размеры геосистем разного уровня. В общем, чем выше иерархическая ступень геосистемы, тем больше ее пло­щадь (табл. 2).

Таблица 2

Примерные размеры геосистем различных рангов на равнинных территориях

Вертикальную мощность геосистем В.Б. Сочава оце­нивает следующими величинами:

Фация - 0,02 - 0,05 км

Ландшафт -1.5- 2,0 км

Провинция - 3,0 - 5,0 км

Физико-географический пояс - 8,0 - 18,0 км

Но в таких оценках много неопределенного, т.к. нет ком­плексных данных и даже теоретически достаточно четко разра­ботанных критериев для установления как верхней, так и ниж­ней границ геосистем разных иерархических уровней.

Ландшафтная зональность.

3. Географическая секторность и ее влияние на региональ­ные ландшафтные структуры.

4. Высотная поясность как фактор ландшафтной диффе­ренциации.

I. Эрозионно-денудационные расчлененные низкогорья с широкими плоскими водоразделами, куполовидными вершинами или отдельными уплощенными увалами с темнохвойными и смешанными лесами на горно-лесных бурых, реже дерново-подзолистых почвах.

24. Темнохвойные и смешанные леса на горно-лесных дерново-подзолистых, подзолистых и бурых почвах.

25. Темнохвойными лесами на горно-лесных бурых, реже дерново-подзолистых почвах.

II. Поверхности водораздельные с широкими выпуклыми и гребневидными водоразделами, со скалами, вершинами с редкостойными смешанными (пихтово-кедрово-мелколиственными) лесами на горно-лесных бурых почвах.

26. пихтово-кедровые, березово-кедровые леса на горно-лесных бурых почвах.

27. кедрово-пихтовые леса с березой на горно-лесных бурых и горных дерново-подзолистых почвах.

Д. Речные долины.

I. Террасированные долины сложенные песчано-галечниково-валунным, суглинисто-гравийно-галечным материалом с согровыми и ивово-тополе­выми лесами, чередующимися с пойменными лугами, кустарниками и бо­лотами на аллювиально-луговых и болотных почвах.

28. лиственнично-еловые леса на торфянисто-глеевых почвах, в сочетании с заболоченными березовыми, елово-березовыми лесами (сограми) на торфяно-глеевых, перегнойно-глеевых почвах.

29. сочетание мелколиственно-хвойных лесов, болот, кустарниковых за­рослей, лугов на дерново-луговых, торфянисто-перегнойных, местами торфяно-глеевых почвах.

30. разнотравно-злаковые луга, чередующиеся с ивовыми и тополевыми лесами на аллювиальных дерновых и луговых почвах.

31. травяные, моховые болота с сочетанием заболоченных лесов на пере­гнойно-торфянистых почвах.

32. Граница Кемеровской области

33. Граница ландшафтов

Среднегорные экзарационные и эрозионно-денудацион­ные ландшафты.

Гляциальные ландшафты в Алатауско-Шорском нагорье занимают относительно небольшие площади. В этом горном районе обнаружен 91 ледник общей площадью 6,79 км 2 . Ареал распространения ледников простирается от горы Большой Таскыл на севере до Терень-Казырского хребта на юге Кузнецкого Алатау в пределах Тегир-Тышского горного массива. Ледники располагаются группами, образуя отдельные очаги оледенения, которые, в свою очередь, можно объединить в районы. Северный – ледники у горы Большой Таскыл общей площадью 0,04 км 2 . Центральный – ледники у горы Крестовая, горы Средний Каным, горы Большой Каным, горы Чексу общей площадью 2,65 км 2 . Южный – ледники, лежащие к северу и югу от горного массива Тигиртиш общей площадью 4,1 км 2 .

Основная физико-географическая особенность Кузнецкого Алатау – чрезвычайно низкий гипсометрический уровень размещения гляциальных ландшафтов. Большинство из них расположено на высоте 1400-1450 м. некоторые ледники оканчиваются на высоте 1200-1250 м. В южном районе отдельные ледники спускаются до 1340-1380 м. Наиболее низко залегают присклоновые ледники. Некоторые из них располагаются в пределах верхней границы леса. Ледники Кузнецкого Алатау лежат ниже, чем в других внутриконтинентальных горных районах северного полушария на той же широте.

Определяющий фактор существования гляциальных ландшафтов Кузнецкого Алатау – ветровое перераспределение и метелевая концентрация снега на подветренных склонах гор. Ледники занимают подветренные уступы нагорных террас, подветренные склоны за обширными площадками водоразделов и платообразных вершин, формируются в карах и на затененных стенах, у подножия крутых склонов и в эрозионно-нивальных ложбинах. В Кузнецком Алатау ледники не спускаются в долины, а располагаются на склонах, поэтому наиболее распространенный тип ледников в этом районе – присклоновый.

Существование современных ледников на Кузнецком Алатау объясняется совокупностью благоприятных для оледенения климатических и орографических факт

Арендный блок

Биосфера - область активной жизни, охватывающая нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы (живое вещество) и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов (в т. ч. человека) проявляется как геохимический фактор планетарного масштаба и значения, создано Вернадским.

Области развития живого вещества на Земле могут ограничиваться пятью параметрами: количеством углекислого газа и кислорода; наличием воды в жидкой фазе; термическим режимом; наличием «прожиточного минимума» - элементов минерального питания; сверхсоленостью вод. На поверхности Земли очень мало участков, где бы перечисленные факторы препятствовали развитию живых организмов. Весь Мировой океан заселен организмами. Они есть и в Марианской впадине, и подо льдами Ледовитого океана и Антарктиды. В атмосфере жизнь выявлена не только в пределах тропосферы, но и в стратосфере: жизнеспособные организмы были обнаружены на высоте около 80 км. Однако активная жизнь большинства организмов проходит в атмосфере до высот, где существуют насекомые и птицы. Выше встречаются бактерии, дрожжевые грибки, споры грибов, мхов и лишайников, вирусы, водоросли и т.д. Большинство из них на таких высотах находятся в состоянии анабиоза. В пределах континентов нижняя граница биосферы проходит по меняющимся глубинам, которые контролируются в основном особенностями подземных вод. Активные и разнообразные формы микрофлоры обнаружены на глубинах свыше 3 км, причем живые бактерии имелись в водах с температурой 100° С.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Геохимия

Геохимия геосфер. Литосфера. Атмосфера. Гидросфера. Педосфера. Факторы миграции химических элементов в земной коре. Геохимия ландшафтов. Геохимическая классификация ландшафтов.

Классификации природных систем биосферы базируются на ландшафтном подходе, так как экосистемы – неотъемлемая часть природных географических ландшафтов, образующих географическую (ландшафтную) оболочку Земли. Биогеоценозы (экосистемы) образуют на поверхности Земли так называемую биогеосферу, являющуюся основой биосферы, которую В. И. Вернадский называл «пленкой жизни», а В. Н. Сукачев – «биогеоценотическим покровом».

«Биогеоценотический покров» В. Н. Сукачева – это не что иное, как ряд природных экосистем, представляющих собой пространственные (хорологические) единицы (части, элементы) биосферы. Эти единицы, как правило, совпадают своими границами с ландшафтными элементами географической оболочки Земли.

Ландшафт – природный географический комплекс, в котором все основные компоненты (верхние горизонты литосферы, рельеф, климат, воды, почвы, биота) находятся в сложном взаимодействии, образуя однородную по условиям развития единую систему.

Ландшафтный подход в экологии имеет, прежде всего, большое значение для целей природопользования. По происхождению выделяют два основных типа ландшафтов – природный и антропогенный.

Природный ландшафт формируется исключительно под влиянием природных факторов и не преобразован хозяйственной деятельностью человека. Изначально выделяли следующие природные ландшафты:

геохимический – обозначает участок, выделенный на основе единства состава и количества химических элементов и соединений. Интенсивность их накопления в ландшафте или, напротив, скорость самоочищения ландшафта могут служить показателями его устойчивости по отношению к антропогенным воздействиям;

элементарный ландшафт обозначает участок, сложенный определенными породами, находящимися на одном элементе, рельефа, в равных условиях залегания грунтовых вод, с одинаковым характером растительных ассоциаций и одним типом почв;

охраняемый ландшафт, на котором в установленном порядке регламентированы или запрещены все или отдельные виды хозяйственной деятельности.

Однако, как считают многие ученые, сейчас на суше преобладают антропогенные ландшафты или, во всяком случае, по распространенности они равны природным.

Антропогенный ландшафт – это бывший природный ландшафт, преобразованный хозяйственной деятельностью настолько что изменена связь его природных компонентов. Сюда относятся ландшафты:

агрокультурный (сельскохозяйственный) – растительность которого в значительной степени заменена посевами и посадками сельскохозяйственных и садовых культур;

техногенный, структура которого обусловлена техногенной деятельностью человека, связанной с использованием мощных технических средств (нарушение земель, загрязнение промышленными выбросами и т. п.); сюда же входит ландшафт индустриальный, образующийся в результате воздействия на среду крупных промышленных комплексов;

городской (урбанистический) – с постройками, улицами и парками.

Границы географической (ландшафтной) оболочки Земли совпадают с границами биосферы, но поскольку в географическую оболочку входят и участки, где нет жизни, можно условно принимать, что биосфера входит в ее состав. Фактически же – это неразрывное единство, о чем свидетельствует и ландшафтный подход при выделении типов природных экосистем. Одним из таких примеров служит классификация по Р. X. Уиттекеру, использованная им при оценке продуктивности экосистем земного шара (табл. 7.1).

Таблица 7.1 Первичная биологическая продуктивность экосистем земного шара (по Р. X. Уиттекеру, 1980)

Главный источник энергии для ландшафтной оболочки, как и для бисферы, – солнечная радиациия. Для биосферы солнечная энергия – это прежде всего «движитель» биогеохимических циклов биофильных элементов и главный компонент фотосинтеза – источника первичной продукции. Как видно из табл. 7.1, продуктивность биосферы складывается из продуктивности различных природных экосистем (одновременно и энергий ландшафтов).

Но энергия Солнца, обеспечивая эту продуктивность, составляет лишь 2–3% от всей его энергии, достигшей поверхности Земли. Остальная солнечная энергия расходуется на абиотическую среду, если не считать достаточно активное участие ее в процессах физико-химического разложения, опада и др. Но абиотические факторы определяют вместе с биотическими эволюционное развитие организмов и гомеостаз экосистем. В свою очередь – растительный и животный мир – столь мощные природные компоненты, что могут влиять на окружающую среду и «переделать ее под себя», создавая определенную микросреду (микроклимат). Все это свидетельствует о том, что живая природа существует в едином энергетическом поле всего ландшафта. Об этом говорит и распределение первичной продукции, на суше и в океане (рис. 7.1; Бигон и др., 1989).

Как видно из рис. 7.1, продуктивность различных типов экосистем далеко не одинакова и занимают они разные по величине территории на планете. Различия в продуктивности связаны с климатической зональностью, характером среды обитания (суша, вода), с влиянием экологических факторов локального порядка их. п., сведения о которых излагаются ниже при характеристике природных экосистем как хорологических единиц биосферы, классифицированных на принципах так называемого биомного подхода. По Ю. Одуму (1986), биом – «крупная региональная и субконтинентальная экосистема, характеризующаяся каким-либо основным типом растительности или другой характерной особенностью ландшафта».

Опираясь на эти представления, Ю. Одум предложил следующую классификацию природных экосистем биосферы (на рис. 7.2 – мировое распределение биомов):

I. Наземные биомы.

Тундра: арктическая и альпийская.

Бореальные хвойные леса.

Листопадный лес умеренной зоны.

Степь умеренной зоны.

Тропические степи и саванны.

Чапарраль – районы с дождливой зимой и засушливым летом.

Пустыня: травянистая и кустарниковая.

Полувечнозеленый тропический лес: выраженный влажный и сухой сезоны.

Вечнозеленый тропический дождевой лес.

И. Типы пресноводных экосистем

Лентические (лат. lentes спокойный): озера, пруды и т. д.

Лотические (лат. lotus – омывающий): реки, ручьи, родники.

Заболоченные угодья: болота и болотистые леса.

III. Типы морских экосистем

Открытый океан (пелагическая).

Воды континентального шельфа (прибрежные воды).

Районы апвеллинга (плодородные районы с продуктивным рыболовством).

Эстуарии (прибрежные бухты, проливы, устья рек, соленые марши и т. д.

Границы распространения биомов определяются ландшафтными компонентами материков, в названии, как правило, доминирующая растительность (лесной, кустарниковый и т. п.). В водных экосистемах растительные организмы не доминируют, поэтому за основу взяты физические признаки среды обитания («стоячая», «текучая» вода, открытый океан и т. п.).

Как явствует из вышесказанного, биом – это экосистема, которая совпадает своими границами с ландшафтами регионального уровня (рис. 7.2). Он состоит из тех же компонентов, что и ландшафт, но главный компонент его – биота, и основное внимание здесь уделяется процессам, создающим органическое вещество, и биохимическому круговороту веществ.



Понравилась статья? Поделитесь ей
Наверх