Лазеры и их применение в медицине. Применение лазеров в медицине

лазер глаз медицина зрение

Лазеры, применяемые в медицине

С практической точки зрения, особенно для использования в медицине, лазеры классифицируют по типу активного материала, по способу питания, длине волны и мощности генерируемого излучения.

Активной средой может быть газ, жидкость или твердое тело. Формы активной среды также могут быть различными. Чаще всего для газовых лазеров используются стеклянные или металлические цилиндры, заполненные одним или несколькими газами. Примерно так же обстоит дело и с жидкими активными средами, хотя часто встречаются прямоугольные кюветы из стекла или кварца. Жидкостные лазеры -- это лазеры, в которых активной средой являются растворы определенных соединений органических красителей в жидком растворителе (воде, этиловом или метиловом спиртах и т.п.).

В газовых лазерах активной средой являются различные газы, их смеси или пары металлов. Эти лазеры разделяются на газоразрядные, газодинамические и химические. В газоразрядных лазерах возбуждение осуществляется электрическим разрядом в газе, в газодинамических -- используется быстрое охлаждение при расширении предварительно нагретой газовой смеси, а в химических -- активная среда возбуждается за счет энергии, освобождающейся при химических реакциях компонентов среды. Спектральный диапазон газовых лазеров значительно шире, чем у всех остальных типов лазеров. Он перекрывает область от 150 нм до 600 мкм.

Эти лазеры имеют высокую стабильность параметров излучения по сравнению с другими типами лазеров.

Лазеры на твердых телах имеют активную среду в форме цилиндрического или прямоугольного стержня. Таким стержнем чаще всего является специальный синтетический кристалл, например рубин, александрит, гранат или стекло с примесями соответствующего элемента, например эрбия, гольмия, неодима. Первый действующий лазер работал на кристалле рубина.

Разновидностью активного материала в виде твердого тела являются также полупроводники. В последнее время благодаря своей малогабаритности и экономичности полупроводниковая промышленность очень бурно развивается. Поэтому полупроводниковые лазеры выделяют в отдельную группу.

Итак, соответственно типу активного материала выделяют следующие типы лазеров:

Газовые;

Жидкостные;

На твердом теле (твердотельные);

Полупроводниковые.

Тип активного материала определяет длину волны генерируемого излучения. Различные химические элементы в разных матрицах позволяют выделить сегодня более 6000 разновидностей лазеров. Они генерируют излучение от области так называемого вакуумного ультрафиолета (157 нм), включая видимую область (385-760 нм), до дальнего инфракрасного (> 300 мкм) диапазона. Все чаще понятие "лазер", вначале данное для видимой области спектра, переносится также на другие области спектра.

Таблица 1 - лазеры применяемые в медицине.

Тип лазера

Агрегатное состояние активного вещества

Длина волны, нм

Диапазон излучения

Инфракрасный

YAG:Er YSGG:Er YAG:Ho YAG:Nd

Твердое тело

2940 2790 2140 1064/1320

Инфракрасный

Полупроводниковый, например арсенид галлия

Твердое тело (полупроводник)

От видимого до инфракрасного

Рубиновый

Твердое тело

Гелий-неоновый (He-Ne)

Зеленый, ярко-красный, инфракрасный

На красителях

Жидкость

350-950 (перестраиваемая)

Ультрафиолет - инфракрасный

На парах золота

На парах меди

Зеленый/желтый

Аргоновый

Голубой, зеленый

Эксимерный: ArF KrF XeCI XeF

Ультрафиолет

Например, для более коротковолнового излучения, чем инфракрасное, используется понятие "рентгеновские лазеры", а для более длинноволнового, чем ультрафиолетовое, -- понятие "лазеры, генерирующие миллиметровые волны"

В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 632,8 нм (нм = 10~9 м) видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров. Все газовые лазеры довольно похожи по конструкции и свойствам.

Например, С02-газовый лазер излучает длину волны 10,6 мкм в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера -- 488 и 514 нм.

Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Одним из примеров является неодим (Кё)-лазер. Термин АИГ является сокращением для кристалла -- алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1,064 мкм. Вспомогательные устройства, которые могут быть как внутренними, так и внешними по отношению к резонатору, могут использоваться для преобразования выходного луча в видимый или ультрафиолетовый диапазон. В качестве лазерных сред могут использоваться различные кристаллы с разными концентрациями ионов-активаторов: эрбия (Ег3+), гольмия (Но3+), тулия (Тт3+).

Выберем из этой классификации лазеры, наиболее пригодные и безопасные для медицинского использования. К более известным газовым лазерам, используемым в стоматологии, относятся С02-лазеры, He-Ne-лазеры (гелий-неоновые лазеры). Представляют интерес также газовые эксимерные и аргоновые лазеры. Из твердотельных лазеров наиболее популярным в медицине является лазер на YAG:Er, имеющий в кристалле эрбиевые активные центры. Все чаще обращаются к лазеру на YAG:Ho (с гольмиевыми центрами). Для диагностического и терапевтического применения используется большая группа как газовых, так и полупроводниковых лазеров. В настоящее время в производстве лазеров в качестве активной среды используется свыше 200 видов полупроводниковых материалов.

Таблица 2 - характеристики разнообразных лазеров.

Лазеры можно классифицировать по виду питания и режиму работы. Здесь выделяются устройства непрерывного или импульсного действия. Лазер непрерывного действия генерирует излучение, выходная мощность которого измеряется в ваттах или милливаттах.

При этом степень энергетического воздействия на биоткань характеризуется:

Плотностью мощности - отношение мощности излучения к площади сечения лазерного пучка р = P/s].

Единицы измерения в лазерной медицине -- [Вт/см 2 ], [мВт/см 2 ];

Дозой излучения П, равной отношению произведения мощности излучения [Р и времени облучения к площади сечения лазерного пучка. Выражается в [Вт * с/см 2 ];

Энергией [Е= Рt] -- произведение мощности на время. Единицы измерения -- [Дж], т.е. [Вт с].

С точки зрения мощности излучения (непрерывной или средней) медицинские лазеры делятся на:

Лазеры малой мощности: от 1 до 5 мВт;

Лазеры средней мощности: от 6 до 500 мВт;

Лазеры большой мощности (высокоинтенсивные): более 500 мВт. Лазеры малой и средней мощности причисляют к группе так называемых биостимулирующих лазеров (низкоинтенсивных). Биостимулирующие лазеры находят все более широкое терапевтическое и диагностическое использование в экспериментальной и клинической медицине.

С точки зрения режима работы лазеры делятся на:

Режим излучения непрерывный (волновые газовые лазеры);

Режим излучения смешанный (твердотельные и полупроводниковые лазеры);

Режим с модуляцией добротности (возможен для всех типов лазеров).

Применение лазеров в медицине принципиально отличается от других многочисленных областей технологических применения лазеров. Лазерные медицинские технологии отличаются гуманистической направленностью. Если проблема здоровья стоит достаточно остро для самого человека или его близкого, то проблемы медицины становятся неизмеримо важнее любых других проблем.

Лазерные медицинские технологии отличаются многоплановостью, комплексностью, разнообразием. Лазерная медицина включает воздействие лазерного излучения на различные части тела: кожа, кости, мышцы, жировые ткани, сухожилия, внутренние органы, глаза, зубные ткани и т. п. При этом каждая из них в свою очередь имеет сложное строение. Так в зубе можно отдельно рассматривать эмаль, дентин, пульпу. В коже - роговой слой, эпидермис, дерму. Все эти ткани имеют свои свойства, как оптические (спектральные характеристики, коэффициент отражения, глубина проникновения излучения), так и теплофизические (теплопроводность, температуропроводность, теплоемкость), отличные от свойств других биотканей. Поэтому различается и характер воздействия на них лазерного излучения. Соответственно, в каждом случае необходимо выбирать индивидуальные параметры режима облучения: длину волны, длительность воздействия, мощность, частоту следования импульсов и т.п. Сильное различие свойств биотканей делает возможным специфические воздействия, например, чрескожное воздействие на патологические ткани (облучение подкожных тканей без существенного повреждения кожи).

Каждая ткань в силу своей биологической природы неоднородна, имеет сложную микроструктуру. В состав мягких тканей входит значительное количество воды. В состав костей входят различные минералы. Следствием этого является тот факт, что воздействие излучения на ткани, в особенности разрушающее, хирургическое, для разных тканей и длин волн излучения различается не только количественно, но и качественно. Это означает, что существует несколько совершенно различных механизмов удаления биологических тканей: тепловой и низкоэнергетический коагуляционный с последующей резорбцией, взрывные механизмы, «холодная» абляция.

Интересно, что для осуществления терапевтического воздействия на определенную часть тела лазерное воздействие может быть направлено совсем на другой объект. Здесь показательным является лазерная терапия, когда облучение крови, особых точек или проекций органов на коже человека (зоны Захарьина - Геда), стопе или ладони, области позвоночника оказывает воздействие на внутренние органы, весьма удаленные от области воздействия, и на весь организм в целом.

Кроме того, поскольку организм представляет собой единое целое, результат воздействия продолжается очень долго после его окончания. После лазерной операции реакция организма продолжается в течение дней, недель и даже месяцев.

Такая сложность и комплексность лазерной медицины делает ее очень интересной для исследования и разработки новых технологий.

Почему лазерное излучение нашло такое широкое применение в медицине? Основными особенностями лазерного излучения в применении к лазерной медицине являются:

  • -направленность, монохроматичность, когерентность, определяющие возможность локализации энергии,
  • - широкий спектральный диапазон существующих лазеров (это особенно важно в том случае, когда поглощение носит резонансный характер),
  • - возможность в широких пределах управлять длительностью воздействия (существующие лазеры обеспечивают длительность воздействия от фемтосекундного диапазона до непрерывного воздействия),
  • - возможность плавного изменения в широких пределах интенсивности воздействия,
  • - возможность изменения частотных характеристик воздействия,
  • - широкие возможности оптического управления процессами, в том числе, возможность организации обратной связи,
  • - широкий спектр механизмов воздействия: тепловой, фотохимический, сугубо биофизический, химический,
  • - простота доставки излучения,
  • - возможность бесконтактного воздействия, что обеспечивает стерильность,
  • - возможность проведения бескровных операций, связанная с тепловым и, следовательно, коагуляционным действием излучения.

Таким образом, лазер представляется исключительно точным, универсальным и удобным в использовании инструментом и имеет большой потенциал для медицинских применений в будущем.

Принцип работы лазера

Принципиальную схему работы любого лазерного излучателя можно представить следующим образом (рис. 1).

Рис. 1.

В структуру каждого из них входит цилиндрический стержень с рабочим веществом, на торцах которого расположены зеркала, одно из которых обладает небольшой проницаемостью. В непосредственной близости от цилиндра с рабочим веществом расположена лампа-вспышка, которая может быть параллельна стержню или змеевидно окружать его. Известно, что в нагретых телах, например в лампе накаливания, происходит спонтанное излучение, при котором каждый атом вещества излучает по-своему, и, таким образом, имеются хаотически направленные друг относительно друга потоки световых волн. В лазерном излучателе используется так называемое вынужденное излучение, которое отличается от спонтанного и возникает при атаке возбужденного атома квантом света. Испускаемый при этом фотон по всем электромагнитным характеристикам абсолютно идентичен первичному, атаковавшему возбужденный атом. В результате появляются уже два фотона, обладающие одинаковой длиной волны, частотой, амплитудой, направлением распространения и поляризации. Легко представить, что в активной среде происходит процесс лавинообразного нарастания числа фотонов, по всем параметрам копирующих первичный "затравочный" фотон, и формирующих однонаправленный световой поток. В качестве такой активной среды в лазерном излучателе выступает рабочее вещество, а возбуждение его атомов (накачка лазера) происходит за счет энергии лампы-вспышки. Потоки фотонов, направление распространения которых перпендикулярно плоскости зеркал, отражаясь от их поверхности, многократно проходят сквозь рабочее вещество туда и обратно, вызывая все новые и новые цепные лавинообразные реакции. Поскольку одно из зеркал обладает частичной проницаемостью, часть образующихся фотонов выходит в форме видимого лазерного луча.

Таким образом, отличительной особенностью лазерного излучения является монохроматичность, когерентность и высокая поляризация электромагнитных волн в световом потоке. Монохроматичность характеризуется наличием в спектре источника фотонов преимущественно одной длины волны, когерентность есть синхронизация во времени и пространстве монохроматичных световых волн. Высокая поляризация - закономерное изменение направления и величины вектора излучения в плоскости, перпендикулярной световому лучу. То есть фотоны в лазерном световом потоке обладают не только постоянством длин волн, частот и амплитуды, но и одинаковым направлением распространения и поляризации. В то время как обычный свет состоит из хаотично разлетающихся разнородных частиц. Для сравнения можно сказать, что между светом, испускаемым лазером, и обычной лампой накаливания такая же разница, как между звуком камертона и шумом улицы.

Применение лазеров в стоматологии

В стоматологии лазерное излучение прочно заняло достаточно обширную нишу. На кафедре ортопедической стоматологии БГМУ проводится работа по изучению возможностей применения лазерного излучения, которая охватывает как физиотерапевтические и хирургические аспекты действия лазера на органы и ткани челюстно-лицевой области, так и вопросы технологического применения лазеров на этапах изготовления и ремонта протезов и аппаратов.

Слово LASER (Light Amplifacation by the Stimulated Emission ) с английского переводится как Усиление Света путем Стимулирования Излучения . Само действие лазера было описано еще Энштейном в далеком 1917 году, но первый работающий лазер был построен лишь спустя 43 года Теодором Мейманом, который работал в компании Hugрes Aircraft. Для получения миллисекундных импульсов лазерного излучения он использовал кристалл искусственного рубина как активную среду. Длина волны того лазера была 694 нм. Через некоторое время был испробован уже лазер с длиной волны в 1060 нм, что является ближней ИК-областью спектра. В качестве активной среды в этом лазере выступали стеклянные стержни, легированные неодимом.

Но практического применения в то время лазер не имел. Ведущие специалисты-физики искали ему предназначение в различных сферах деятельности человека. Первые экспериментальные опыты с лазером в медицине были не совсем успешные. Лазерное излучение, на тех волнах довольно плохо поглощалось, точно контролировать мощность еще не было возможности. Однако в 60-х годах лазер на красном рубине хорошо себя показал в офтальмологии.

История применения лазеров в медицине

В 1964 году был разработан и опробован аргоновый ионный лазер. Это был лазер непрерывного излучения с сине-зеленой областью спектра и длиной волны в 488 нм. Это газовый лазер и контролировать мощность его было легче. Гемоглобин хорошо поглощал его излучение. Спустя короткое время стали появляться лазерные системы на основе аргонового лазера, которые помогали в лечении заболеваний сетчатки глаза.

В том же 64 году в лаборатории Bell был разработан лазер на алюмоитриевом гранате, легированным неодимом () и . СО2 — это газовый лазер, у которого излучение имеет непрерывный характер, с длиной волны 1060 нм. Вода очень хорошо поглощает его излучение. А так как мягкие ткани у человека в основном состоят из воды, то лазер СО2 стал хорошей альтернативой обычному скальпелю. При использовании этого лазера для разрезания тканей сводится к минимуму кровопотеря. В 70-х годах углекислотные лазеры нашли широкое применение в госпиталях при институтах в США. Сфера применения в то время для лазерных скальпелей: гинекология и отоларингология.

1969 год стал годом разработки первого импульсного лазера на красителях, а уже в 1975 году появился первый эксимерный лазер. Начиная с этого времени лазер стал активно использоваться и внедряться в различные сферы деятельности.

Широкое распространение лазеры в медицине начали получать в 80-х годах в больницах и клиниках США. В большинстве своем тогда использовались углекислотные и аргоновые лазеры и применялись они в хирургии и офтальмологии. В недостатки лазеров того времени можно записать то, что у них было постоянное непрерывное излучение, которое исключало возможность более точной работы, что приводило к тепловым поражениям тканей вокруг обрабатываемой зоны. Успешное применение лазерных технологий в то время требовало колоссального опыта работы.

Следующим шагом в разработке лазерных технологий для медицины стало изобретение импульсного лазера. Такой лазер позволял воздействовать исключительно на проблемную зону, без повреждения окружающих тканей. И в 80-х годах появились первые . Это стало началом применения лазеров в косметологии. Такие лазерные системы могли удалять капиллярные гемангиомы и родимые пятна. Чуть позже появились лазеры способные . Это были лазеры с модуляцией добротности (Q-switched lser).

Начало 90-х годов были разработаны и внедрены технологии сканирования. Точность лазерной обработки теперь контролировалась компьютером и появилась возможность проводить лазерную шлифовку кожи (), что значительно подняло популярность и .

Сегодня область применения лазеров в медицине очень широкая. Это хирургия, офтальмология, стоматология, нейрохирургия, косметология, урология, гинекология, кардиология и т.д. Вы можете себе представить, что когда то лазер лишь был неплохой альтернативой скальпелю, а сегодня с его помощью можно удалять раковые клетки, производить очень точные операции на различных органах, диагностировать серьезные заболевания на самых ранних стадиях, такие как рак. Сейчас лазерные технологии в медицине идут в сторону развития комбинированных методов лечения, когда на ряду с лазерной терапией применяют физиотерапию,медикаменты, УЗ. К примеру в лечении гнойных заболеваний был разработан комплекс мероприятий, который включает лазерную обработку, использование антиоксидантов и различных биологически активных материалов.

Лазерные технологии и медицина должны идти рука об руку в будущее. Даже уже сегодня новейшие разработки в лазерной медицине помогают в удалении раковых опухолей, применяются в коррекции тела в косметологии и зрения в офтальмологии. Малоинвазивная хирургия, когда с использованием лазера делаются очень сложные операции.

Дополнительная информация:

За последние полвека лазеры нашли применение в офтальмологии, онкологии, пластической хирургии и многих других областях медицины и медико-биологических исследованиях.

О возможности использования света для лечения болезней было известно тысячи лет назад. Древние греки и египтяне применяли солнечное излучение в терапии, и эти две идеи даже были связаны друг с другом в мифологии - греческий бог Аполлон был богом солнца и исцеления.

И только после изобретения источника когерентного излучения более 50 лет назад действительно был выявлен потенциал использования света в медицине.

Благодаря особым свойствам, лазеры гораздо эффективнее, чем радиация солнца или других источников. Каждый квантовый генератор работает в очень узком диапазоне длин волн и излучает когерентный свет. Также лазеры в медицине позволяют создавать большие мощности. Пучок энергии может быть сосредоточен в очень маленькой точке, благодаря чему достигается ее высокая плотность. Эти свойства привели к тому, что сегодня лазеры используются во многих областях медицинской диагностики, терапии и хирургии.

Лечение кожи и глаз

Применение лазеров в медицине началось с офтальмологии и дерматологии. Квантовый генератор был открыт в 1960 году. И уже через год после этого Леон Голдман продемонстрировал, как рубиновый красный лазер в медицине может быть использован для удаления капиллярной дисплазии, разновидности родимых пятен, и меланомы.

Такое применение основано на способности источников когерентного излучения работать на определенной длине волны. Источники когерентного излучения в настоящее время широко используются для удаления опухолей, татуировок, волос и родинок.

В дерматологии применяются лазеры различных типов и длин волн, что обусловлено разными видами излечиваемых поражений и основного поглощающего вещества внутри них. также зависит от типа кожи пациента.

Сегодня нельзя практиковать дерматологию или офтальмологию, не имея лазеров, так как они стали основными инструментами лечения пациентов. Применение квантовых генераторов для коррекции зрения и широкого спектра офтальмологических приложений выросло после того, как Чарльз Кэмпбелл в 1961 году стал первым врачом, использовавшим красный лазер в медицине для исцеления пациента с отслоением сетчатки.

Позже для этой цели офтальмологи стали применять аргоновые источники когерентного излучения в зеленой части спектра. Здесь были задействованы свойства самого глаза, особенно его линзы, фокусировать луч в области отслоения сетчатки. Высококонцентрированная мощность аппарата ее буквально приваривает.

Больным с некоторыми формами макулодистрофии может помочь лазерная хирургия - лазерная коагуляция и фотодинамическая терапия. В первой процедуре луч когерентного излучения используется для герметизации кровеносных сосудов и замедления их патологического роста под макулой.

Подобные исследования были проведены в 1940 годах с солнечным светом, но для их успешного завершения врачам были необходимы уникальные свойства квантовых генераторов. Следующим применением аргонового лазера стала остановка внутренних кровотечений. Селективное поглощение зеленого света гемоглобином - пигментом красных кровяных клеток - использовалось для блокирования кровоточащих кровеносных сосудов. Для лечения рака разрушают кровеносные сосуды, входящих в опухоль и снабжающие ее питательными веществами.

Этого невозможно добиться, используя солнечный свет. Медицина очень консервативна, как это и должно быть, но источники когерентного излучения получили признание в разных ее областях. Лазеры в медицине заменили многие традиционные инструменты.

Офтальмология и дерматология также извлекли выгоду из эксимерных источников когерентного излучения в ультрафиолетовом диапазоне. Они стали широко использоваться для изменения формы роговицы (LASIK) для коррекции зрения. Лазеры в эстетической медицине применяются для удаления пятен и морщин.

Прибыльная косметическая хирургия

Такие технологические разработки неизбежно популярны среди коммерческих инвесторов, так как обладают огромным потенциалом получения прибыли. Аналитическая компания Medtech Insight в 2011 г. оценила объем рынка лазерного косметического оборудования на сумму более 1 млрд долларов США. Действительно, несмотря на снижение общего спроса на медицинские системы во время глобального спада, косметические операции, основанные на использовании квантовых генераторов, продолжают пользоваться постоянным спросом в Соединенных Штатах - доминирующем рынке лазерных систем.

Визуализация и диагностика

Лазеры в медицине играют важную роль в раннем выявлении рака, а также многих других заболеваний. Например, в Тель-Авиве группа ученых заинтересовалась ИК-спектроскопией с использованием инфракрасных источников когерентного излучения. Причиной этого является то, что рак и здоровая ткань могут иметь различную проходимость в инфракрасном диапазоне. Одним из перспективных применений этого метода является выявление меланом. При раке кожи ранняя диагностика очень важна для выживаемости пациентов. В настоящее время обнаружение меланомы делается на глаз, поэтому остается полагаться на мастерство врача.

В Израиле раз в год каждый человек может пойти на бесплатный скрининг меланомы. Несколько лет назад в одном из крупных медицинских центров проводились исследования, в результате которых появилась возможность наглядно наблюдать разницу в ИК-диапазоне разницу между потенциальными, но неопасными признаками, и настоящей меланомой.

Кацир, организатор первой конференции SPIE по биомедицинской оптике в 1984 году, и его группа в Тель-Авиве также разработали оптические волокна, прозрачные для инфракрасных длин волн, что позволило распространить этот метод на внутреннюю диагностику. Кроме того, это может стать быстрой и безболезненной альтернативой цервикальному мазку в гинекологии.

Голубой в медицине нашел применение в флюоресцентной диагностике.

Системы на основе квантовых генераторов также начинают заменять рентген, который традиционно использовался в маммографии. Рентгеновские лучи ставят врачей перед сложной дилеммой: для достоверного обнаружения раковых образований необходима их высокая интенсивность, но рост радиации сам по себе увеличивает риск заболевания раком. В качестве альтернативы изучается возможность использования очень быстрых лазерных импульсов для снимка груди и других частей тела, например, мозга.

ОКТ для глаз и не только

Лазеры в биологии и медицине нашли применение в оптической когерентной томографии (ОКТ), что вызвало волну энтузиазма. Этот метод визуализации использует свойства квантового генератора и может дать очень четкие (порядка микрона), поперечные и трехмерные изображения биологической ткани в режиме реального времени. ОКТ уже применяется в офтальмологии, и может, например, позволить офтальмологу увидеть поперечное сечение роговицы для диагностики заболеваний сетчатки и глаукомы. Сегодня техника начинает использоваться также и в других областях медицины.

Одна из крупнейших областей, формирующихся благодаря ОКТ, занимается получением волоконно-оптических изображений артерий. может быть применена для оценки состояния склонной к разрыву нестабильной бляшки.

Микроскопия живых организмов

Лазеры в науке, технике, медицине также играют ключевую роль во многих видах микроскопии. В этой области было сделано большое число разработок, целью которых является визуализация того, что происходит внутри тела пациента без использования скальпеля.

Самым сложным в удалении рака является необходимость постоянно прибегать к услугам микроскопа, чтобы хирург мог убедиться, что все сделано правильно. Возможность делать микроскопию «вживую» и в реальном времени является значительным достижением.

Новое применение лазеров в технике и медицине - сканирование в ближней зоне оптической микроскопии, которая может производить изображения с разрешением гораздо большим, чем у стандартных микроскопов. Этот метод основан на оптических волокнах с насечками на торцах, размеры которых меньше длины волны света. Это позволило субволновую визуализацию и заложило основу для получения изображения биологических клеток. Использование данной технологии в ИК-лазерах позволит лучше понять болезнь Альцгеймера, рак и другие изменения в клетках.

ФДТ и другие методы лечения

Разработки в области оптических волокон помогают расширить возможности применения лазеров и в других сферах. Кроме того, что они позволяют проводить диагностику внутри организма, энергия когерентного излучения может быть передана туда, где в этом есть необходимость. Это может быть использовано в лечении. Волоконные лазеры становятся гораздо более продвинутыми. Они кардинально изменят медицину будущего.

Область фотомедицины, использующая светочувствительные химические вещества, которые взаимодействуют с телом особым образом, может прибегнуть к помощи квантовых генераторов как для диагностики, так и для лечения пациентов. В фотодинамической терапии (ФДТ), например, лазер и фоточувствительное лекарственное средство может восстановить зрение у больных с «влажной» формой возрастной макулярной дегенерации, основной причиной слепоты у людей в возрасте старше 50 лет.

В онкологии некоторые порфирины накапливаются в раковых клетках и флуоресцируют при освещении определенной длиной волны, указывая на место расположения опухоли. Если эти же самые соединения затем осветить другой длиной волны, они становятся токсичными и убивают поврежденные клетки.

Красный газовый гелий-неоновый лазер в медицине применяется в лечении остеопороза, псориаза, трофических язв и др., так как данная частота хорошо поглощается гемоглобином и ферментами. Излучение замедляет воспалительные процессы, предотвращает гиперемию и отеки, улучшает кровоснабжение.

Персонализированное лечение

Еще две области, в которых найдется применение для лазеров - генетика и эпигенетика.

В будущем все будет происходить на наноуровне, что позволит заниматься медициной в масштабах клетки. Лазеры, которые могут генерировать фемтосекундные импульсы и настраиваться на определенную длину волны, являются идеальными партнерами для медиков.

Это откроет дверь для персонализированного лечения, основанного на индивидуальном геноме пациента.

Леон Голдман - родоначальник лазерной медицины

Говоря об использовании квантовых генераторов в лечении людей, нельзя не упомянуть Леона Голдмана. Он известен как «отец» лазерной медицины.

Уже через год после изобретения источника когерентного излучения Голдман стал первым исследователем, применившим его для лечения заболевания кожи. Техника, которую применил ученый, проложила путь последующему развитию лазерной дерматологии.

Его исследования в середине 1960 годов привели к использованию рубинового квантового генератора в хирургии сетчатки глаза и к таким открытиям, как возможность когерентного излучения одновременно разрезать кожу и запечатывать кровеносные сосуды, ограничивая кровотечение.

Голдман, работавший на протяжении большей части своей карьеры дерматологом в университете Цинциннати, основал Американское общество лазеров в медицине и хирургии и помог заложить основы безопасности лазеров. Умер в 1997 г.

Миниатюризация

Первые 2-микронные квантовые генераторы были размером с двуспальную кровать и охлаждались жидким азотом. Сегодня появились диодные, умещающиеся в ладони, и еще более миниатюрные Такого рода изменения прокладывают путь для новых сфер применения и разработок. Медицина будущего будет располагать крошечными лазерами для хирургии головного мозга.

Благодаря технологическому прогрессу происходит постоянное снижение затрат. Подобно тому как лазеры стали привычными в бытовой технике, они начали играть ключевую роль в больничном оборудовании.

Если раньше лазеры в медицине были очень большими и сложными, то сегодняшнее их производство из оптического волокна значительно снизило стоимость, а переход на наноуровень позволит еще больше сократить затраты.

Другие применения

С помощью лазеров урологи могут лечить стриктуру уретры, доброкачественные бородавки, мочевые камни, контрактуру мочевого пузыря и увеличение простаты.

Использование лазера в медицине позволило нейрохирургам делать точные разрезы и производить эндоскопический контроль головного и спинного мозга.

Ветеринары применяют лазеры для эндоскопических процедур, коагуляции опухолей, выполнения разрезов и фотодинамической терапии.

Стоматологи используют когерентное излучение для проделывания отверстий, в хирургии десен, для проведения антибактериальных процедур, зубной десенсибилизации и рото-лицевой диагностики.

Лазерный пинцет

Биомедицинские исследователи во всем мире применяют оптические пинцеты, клеточные сортировщики, а также множество других инструментов. Лазерные пинцеты обещают лучшую и более быструю диагностику рака и использовались для захвата вирусов, бактерий, мелких металлических частиц и нитей ДНК.

В оптическом пинцете пучок когерентного излучения применяется для удержания и вращения микроскопических объектов, аналогично тому, как металлический или пластиковый пинцет способен подобрать маленькие и хрупкие предметы. Отдельными молекулами можно манипулировать, прикрепляя их к стеклышкам микронного размера или шарикам из полистирола. Когда луч попадает в шарик, он искривляется и оказывает небольшое воздействие, подталкивая шарик прямо в центр луча.

Это создает «оптическую ловушку», которая способна удерживать небольшую частицу в пучке света.

Лазер в медицине: плюсы и минусы

Энергия когерентного излучения, интенсивность которой можно модулировать, используется для рассечения, уничтожения или изменения клеточной или внеклеточной структуры биологических тканей. Кроме того, применение лазеров в медицине, кратко говоря, уменьшает риск инфицирования и стимулирует заживление. Применение квантовых генераторов в хирургии увеличивает точность рассечения, однако, они представляют опасность для беременных и есть противопоказания по употреблению фотосенсибилизирующих лекарств.

Сложная структура тканей не позволяет сделать однозначную интерпретацию результатов классических биологических анализов. Лазеры в медицине (фото) являются эффективным инструментом для уничтожения раковых клеток. Однако мощные источники когерентного излучения действуют без разбора и разрушают не только пораженные, но и окружающие ткани. Это свойство - важный инструмент метода микродиссекции, используемый для проведения молекулярного анализа в интересующем месте с возможностью выборочного разрушения лишних клеток. Цель данной технологии заключается в преодолении гетерогенности, присутствующей во всех биологических тканях, для облегчения их исследования по четко определенной популяции. В этом смысле, лазерная микродиссекция внесла значительный вклад в развитие исследований, в понимание физиологических механизмов, которые сегодня можно четко продемонстрировать на уровне популяции и даже одной клетки.

Функционал тканевой инженерии сегодня стал основным фактором в развитии биологии. Что произойдет, если разрезать актиновые волокна во время деления? Будет ли эмбрион дрозофилы стабильным, если разрушить клетку при фолдинге? Каковы параметры, участвующие в меристемной зоне растения? Все эти вопросы можно решить с помощью лазеров.

Наномедицина

В последнее время появилось множество наноструктур, обладающих свойствами, пригодными для целого ряда биологических применений. Важнейшими из них являются:

  • квантовые точки - крошечные светоизлучающие частицы нанометровых размеров, используемые в высокочувствительной клеточной визуализации;
  • магнитные наночастицы, которые нашли применение в медицинской практике;
  • полимерные частицы для инкапсулированных терапевтических молекул;
  • металлические наночастицы.

Развитие нанотехнологий и применение лазеров в медицине, кратко говоря, революционизировало способ введения лекарственных средств. Суспензии из наночастиц, содержащие лекарственные препараты, могут повысить терапевтический индекс многих соединений (увеличить растворимость и эффективность, снизить токсичность) путем селективного воздействия на пораженные ткани и клетки. Они доставляют действующее вещество, а также регулируют высвобождение активного ингредиента в ответ на внешнюю стимуляцию. Нанотераностика является дальнейшим экспериментальным подходом, обеспечивающим двойное использование наночастиц, соединения лекарственное средство, терапию и средства диагностической обработки изображений, что открывает путь к персонализированному лечению.

Применение лазеров в медицине и биологии для микродиссекции и фотоаблации позволило на разных уровнях понять физиологические механизмы развития болезни. Результаты помогут определить лучшие методы диагностики и лечения каждого пациента. Развитие нанотехнологий в тесной связи с достижениями в области визуализации также будут незаменимы. Наномедицина является перспективной новой формой лечения некоторых видов рака, инфекционных заболеваний или диагностики.

Ульяновский Государственный Университет

Факультет Трансферных специальностей

Реферат

По дисциплине:

“Концепции современного естествознания”

На тему:

“Лазер и его применение в медицине”

Выполнил:

Студент группы ФТС-17

Алешин Алексей

Ульяновск, 2009г.

1.Введение 3

2.Лазер 4

2.1 Устройство лазера 5

2.2 Классификация лазеров 9

3. Лазеры в медицине 10

3.1 Стоматология 11

3.2 Хирургия 15

3.3 Сосудистые заболевания кожи 16

3.4 Фотоомоложение кожи 17

3.5 Удаление татуировок и пигментных пятен 18

3.6 Применение лазера в лечении ЛОР-заболеваний 19

3.7 Офтальмология 20

4. Заключение 21

Источники 22

1.Введение

Уже самое начало XX века было отмечено величайшими достижениями человеческого ума. 7 мая 1895 г. на заседании Русского физико-химического общества А. С. Попов продемонстрировал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство предложил итальянский техник и предприниматель Г. Маркони. Так родилось радио. В конце уходящего века был создан автомобиль с бензиновым двигателем, который пришел на смену изобретенному еще в XVIIIв. паровому автомобилю. К началу XX столетия уже действовали линии метро в Лондоне, Нью-Йорке, Будапеште, Вене. 17 декабря 1903 г. американские инженеры братья Орвилл и Уилбор Райт пролетели 260м на созданном ими первом в мире аэроплане, а через 12 лет русский инженер И.И.Сикорский сконструировал и построил первый в мире многомоторный самолет, дав ему имя «Илья Муромец». Не менее потрясающими оказались достижения в физике. Только за одно десятилетие на рубеже двух веков было сделано пять открытий. В 1895г. немецкий физик В. Рентген открыл новый вид излучения, названный позднее его именем; за это открытие он получил в 1901г. Нобелевскую премию, став, таким образом, первым в истории нобелевским лауреатом. В 1896г. французский физик Антуан Анри Беккерель открыл явление радиоактивности - Нобелевская премия 1903 г. В 1897г. английский физик Дж. Дж. Томсон открыл электрон и в следующем году измерил его заряд - Нобелевская премия 1906г. 14 декабря 1900г. на заседании Немецкого физического общества Макс Планк дал вывод формулы для испускательной способности черного тела; этот вывод опирался на совершенно новые идеи, ставшие фундаментом квантовой теории - одной из основных физических теорий XX века. В 1905 г. молодой Альберт Эйнштейн - ему тогда было всего 26 лет - опубликовал специальную теорию относительности. Все эти открытия производили ошеломляющее впечатление и многих повергали в замешательство - они никак не укладывались в рамки существовавшей физики, требовали пересмотра ее основных представлений. Едва начавшись, 20-й век возвестил о рождении новой физики, обозначил невидимую грань, за которой осталась прежняя физика, получившая название «классическая». И вот сегодня человек получил в своё распоряжение всемогущий луч лазера. На что употребит он это новое завоевание ума? Чем станет лазер: универсальным инструментом, надёжным помощником или, напротив, грозным космическим оружием, ещё одним разрушителем?

2. Лазер

Ла́зер (англ.laser , сокр. от L ight A mplification by S timulated E mission of R adiation - «усиление света посредством вынужденного излучения»), опти́ческий ква́нтовыйгенера́тор - устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения. Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза. Физической основой работы лазера служит явление вынужденного (индуцированного) излучения . Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайное направление распространения, поляризацию и фазу.

Гелий-неоновый лазер. Светящийся луч в центре - это не собственно лазерный луч, а электрический разряд, порождающий свечение, подобно тому, как это происходит в неоновых лампах. Луч проецируется на экран справа в виде светящейся красной точки. Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.). Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет из себя два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности. Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

2.1 Устройство лазера.

Все лазеры состоят из трёх основных частей:

  • активной (рабочей) среды;
  • системы накачки (источник энергии);
  • оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Активная среда

В настоящее время в качестве рабочей среды лазера используются все агрегатные состояния вещества: твёрдое, жидкое, газообразное и даже плазма. В обычном состоянии число атомов, находящихся на возбуждённых энергетических уровнях определяется распределением Больцмана:

здесь N - число атомов, находящихся в возбуждённом состоянии с энергией E , N 0 - число атомов, находящихся в основном состоянии, k - постоянная Больцмана, T - температура среды. Иными словами таких атомов очень мало, поэтому вероятность того, что фотон, распространяясь по среде вызовет вынужденное излучение также очень мала по сравнению с вероятностью его поглощения. Поэтому электромагнитная волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения при этом падает по закону Бугера:

здесь I 0 - начальная интенсивность, I l - интенсивность излучения, прошедшего расстояние l в веществе, a 1 - коэффициент поглощения вещества. Поскольку зависимость экспоненциальная, излучение очень быстро поглощается.

В том случае, когда число возбуждённых атомов больше, чем невозбуждённых (то есть в состоянии инверсии населённостей), ситуация прямо противоположна. Акты вынужденного излучения преобладают над поглощением, и излучение усиливается по закону:

где a 2 - коэффициент квантового усиления. В реальных лазерах усиление происходит до тех пор пока величина поступающей за счёт вынужденного излучения энергии не станет равной величине энергии, теряемой в резонаторе. Эти потери связаны с насыщением метастабильного уровня рабочего вещества, после чего энергия накачки идёт только на его разогрев, а также с наличием множества других факторов (рассеяние на неоднородностях среды, поглощение примесями, неидеальностью отражающих зеркал, полезное и нежелательное излучение в окружающую среду и пр.).

Система накачки

Для создания инверсной населённости среды лазера используются различные механизмы. В твердотельных лазерах она осуществляется за счёт облучения мощными газоразрядными лампами-вспышками, сфокусированным солнечным излучением (так называемая оптическая накачка) и излучением других лазеров (в частности, полупроводниковых). При этом возможна работа только в импульсном режиме, поскольку требуются очень большие плотности энергии накачки, вызывающие при длительном воздействии сильный разогрев и разрушение стержня рабочего вещества. В газовых и жидкостных лазерах (см. гелий-неоновый лазер, лазер на красителях) используется накачка электрическим разрядом. Такие лазеры работают в непрерывном режиме. Накачка химических лазеров происходит посредством протекания в их активной среде химических реакций. При этом инверсия населённостей возникает либо непосредственно у продуктов реакции, либо у специально введённых примесей с подходящей структурой энергетических уровней. Накачка полупроводниковых лазеров происходит под действием сильного прямого тока через p-n переход, а также пучком электронов. Существуют и другие методы накачки (газодинамические, заключающиеся в резком охлаждении предварительно нагретых газов; фотодиссоциация, частный случай химической накачки и др.).

На рисунке: а - трёхуровневая и б - четырехуровневая схемы накачки активной среды лазера.

Классическая трёхуровневая система накачки рабочей среды используется, например, в рубиновом лазере. Рубин представляет из себя кристаллкорунда Al 2 O 3 , легированный небольшим количеством ионовхрома Cr 3+ , которые и являются источником лазерного излучения. Из-за влияния электрического полякристаллической решётки корунда внешний энергетический уровень хрома E 2 расщеплён (см. эффект Штарка). Именно это делает возможным использование немонохроматического излучения в качестве накачки. При этом атом переходит из основного состояния с энергией E 0 в возбуждённое с энергией около E 2 . В этом состоянии атом может находиться сравнительно недолго (порядка 10 −8 с), почти сразу происходит безизлучательный переход на уровень E 1 , на котором атом может находиться значительно дольше (до 10 −3 с), это так называемый метастабильный уровень. Возникает возможность осуществления индуцированного излучения под воздействием других случайных фотонов. Как только атомов, находящихся в метастабильном состоянии становится больше, чем в основном, начинается процесс генерации.

Следует отметить, что создать инверсию населённостей атомов хрома Cr с помощью накачки непосредственно с уровня E 0 на уровень E 1 нельзя. Это связано с тем, что если поглощение и вынужденное излучение происходят между двумя уровнями, то оба эти процесса протекают с одинаковой скоростью. Поэтому в данном случае накачка может лишь уравнять населённости двух уровней, чего недостаточно для возникновения генерации.

В некоторых лазерах, например в неодимовом, активной средой которого является специальный сорт стекла, легированный ионами неодима Nd 3+ , используется четырехуровневая схема накачки. Здесь между метастабильным E 2 и основным уровнем E 0 имеется промежуточный - рабочий уровень E 1 . Вынужденное излучение происходит при переходе атома между уровнями E 2 и E 1 . Преимуществом этой схемы является то, что порог генерации достигается, когда населённость метастабильного уровня становится больше населённости рабочего уровня, которая незначительна в состоянии термодинамического равновесия, поскольку последний находится достаточно далеко от основного уровня. Это значительно снижает требования к источнику накачки. Кроме того, подобная схема позволяет создавать мощные лазеры, работающие в непрерывном режиме, что очень важно для некоторых применений.

Оптический резонатор

В ширину спектральной линии , изображённой на рисунке зелёным цветом, укладывается три собственных частоты резонатора . В этом случае генерируемое лазером излучение будет трехмодовым . Для фиолетовой линии излучение будет чисто монохроматическим .

Зеркала лазера не только обеспечивают существование положительной обратной связи, но и работают как резонатор, усиливая одни генерируемые лазером моды, соответствующие стоячим волнам данного резонатора, и ослабляя другие. Если на оптической длинеL резонатора укладывается целое (в смысле «не дробное») число полуволн n :

то такие волны, проходя по резонатору не меняют своей фазы и вследствие интерференции усиливают друг друга. Все остальные, близко расположенные волны, постепенно гасят друг друга. Таким образом спектр собственных частот оптического резонатора определяется соотношением:

здесь c - скорость света в вакууме. Интервалы между соседними частотами резонатора одинаковы и равны:

Линии в спектре излучения в силу различных причин (доплеровское уширение, внешние электрические и магнитное поля, квантовомеханическое эффекты и др.) всегда имеют определённую ширину . Поэтому могут возникать ситуации, когда на ширину спектральной линии укладывается несколько собственных частот резонатора. В этом случае излучение лазера будет многомодовым. Синхронизация этих мод позволяет добиться того, чтобы излучение представляло собой последовательность коротких и мощных импульсов. Если же , то в излучении лазера будет присутствовать только одна частота, в данном случае резонансные свойства системы зеркал слабо выражены на фоне резонансных свойств спектральной линии. При более строгом расчёте необходимо учитывать, что усиливаются волны, распространяющиеся не только параллельно оптической оси резонатора, но и под малым углом к ней. Условие усиления тогда принимает вид:

Это приводит к тому, что интенсивность пучка лучей лазера различна в разных точках плоскости, перпендикулярной этому пучку. Здесь наблюдается система светлых пятен, разделённых тёмными узловыми линиями. Для устранения этих нежелательных эффектов используют различные диафрагмы, рассеивающие нити, а также применяют различные схемы оптических резонаторов.

2.2 Классификация лазеров:

· Твердотельные лазеры на люминесцирующихтвёрдых средах (диэлектрическиекристаллы и стёкла). В качестве активаторов обычно используются ионыредкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырехуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах.

· Полупроводниковые лазеры. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки (инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами), а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии. Полупроводниковые лазеры - наиболее употребительный в быту вид лазеров. Кроме этого применяются в спектроскопии, в системах накачки других лазеров, а также в медицине (см. фотодинамическая терапия).

· Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектроворганических красителей. Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний. Накачка оптическая, могут работать в непрерывном и импульсном режимах. Основной особенностью является возможность перестройки длины волны излучения в широком диапазоне. Применяются в спектроскопических исследованиях.

· Газовые лазеры - лазеры, активной средой которых является смесь газов и паров. Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах. В зависимости от системы накачки газовые лазеры разделяют на газоразрядные лазеры, газовые лазеры с оптическим возбуждением и возбуждением заряженными частицами (например, лазеры с ядерной накачкой, в начале 80-х проводились испытания систем противоракетной обороны на их основе, однако, без особого успеха), газодинамические и химические лазеры. По типу лазерных переходов различают газовые лазеры на атомных переходах, ионные лазеры, молекулярные лазеры на электронных, колебательных и вращательных переходах молекул и эксимерные лазеры.

· Газодинамические лазеры - газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N 2 +CO 2 +He или N 2 +CO 2 +Н 2 О, рабочее вещество - CO 2).

· Эксимерные лазеры - разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул (димерахблагородных газов, а также их моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров, фактически представляющих из себя среду с инверсией населённостей. Эксимерные лазеры отличаются высокими энергетическими характеристикам, малым разбросом длины волны генерации и возможности её плавной перестройки в широком диапазоне.

· Химические лазеры - разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды (смеси газов). Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции. Для осуществления химических реакций в среде необходимо постоянное присутствие свободных радикалов, для чего используются различные способы воздействия на молекулы для их диссоциации. Отличаются широким спектром генерации в ближней ИК-области, большой мощностью непрерывного и импульсного излучения.

· Лазеры на свободных электронах - лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнитном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты генерации. Различают убитроны и скаттроны, накачка первых осуществляется в пространственно-периодическом статическом поле ондулятора, вторых - мощным полем электромагнитной волны. Существуют также мазеры на циклотронном резонансе и строфотроны, основанные на тормозном излучении электронов, а также флиматроны, использующие эффект черенковского и переходного излучений. Поскольку каждый электрон излучает до 10 8 фотонов, лазеры на свободных электронах являются, по сути, классическими приборами и описываются законами классической электродинамики.

· Квантовые каскадные лазеры − полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне. В отличие от обычных полупроводниковых лазеров, которые излучают посредством вынужденных переходов между разрешенными электронными и дырочными уровнями, разделенными запрещенной зонойполупроводника, излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии.

· Другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры, гамма-лазеры и др.).

3. Лазеры в медицине

С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза - это точечная контактная сварка; лазерный скальпель - автогенная резка; сваривание костей - стыковая сварка плавлением; соединение мышечной ткани - тоже контактная сварка. Для того чтобы лазерное излучение оказало какое-либо действие, надо, чтобы ткань его поглощала. Самый популярный лазер в хирургии - углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические ткани с вполне определенной окраской. Например, луч аргонового лазера свободно проходит через матовое стекловидное тело и отдает свою энергию сетчатке, цвет которой близок к красному. Углекислотный лазер пригоден в большинстве случаев, например когда нужно рассечь или приварить друг к другу ткани разного цвета. Однако при этом возникает другая проблема. Ткани насыщены кровью и лимфой, содержат много воды, а излучение лазера в воде теряет энергию. Увеличить энергию лазерного луча можно, но это может привести к прожигу тканей. Создателям хирургических лазеров приходится прибегать к всевозможным уловкам, что сильно удорожает аппаратуру. Специалистам по сварке металлов давно известно, что при резке пакета тонких металлических листов необходимо, чтобы они плотно прилегали друг к другу, а при точечной контактной сварке для тесного контакта свариваемых деталей необходимо дополнительное давление. Этот метод был использован и в хирургии: профессор О. И. Скобелкин и его соавторы предложили при сварке тканей слегка их сдавливать, чтобы вытеснить кровь. Для осуществления нового способа был создан целый набор инструментов, который применяется сегодня в желудочно-кишечной хирургии, при операциях на желчных путях, селезенке, печени, легких.

3.1 Стоматология

Анализ литературных данных по лечению заболеваний слизистой оболочки рта и пародонта показывает, что некоторые средства, особенно антибиотики и стероидные препараты, изменяют окислительно-восстановительный потенциал слюны, ослабляют активность лизоцима, способствуют развитию аллергических реакций, обусловливают снижение резистентности организма к патогенным воздействиям. Все это затрудняет течение и лечение патологического процесса в слизистой оболочке рта и пародонте. Эти факторы вызывают необходимость изыскания новых методов лечения – без применения лекарственных средств. Одним из них является физиотерапия, а среди наиболее эффективных – низкоинтенсивное лазерное излучение. Лазерное излучение достоверно повышает пролиферативную активность клеток в 1,3-3,5 раза. Было установлено, что НИЛИ оказывает на травматический дефект слизистой оболочки рта противовоспалительное действие, способствует ускорению эпителизации и органоспецифическому восстановлению тканей слизистой оболочки а области дефекта. Такой эффект, в первую очередь, обусловлен интенсификацией синтеза ДНК клетках. Установлено, что в момент облучения интенсивность кровоснабжения возрастает на 20%. Оптимальная вазоконстрикторная доза облучения составляла 100 мВт/см 2 (для ГНЛ) при экспозиции 2 мин (12 Дж/см 2) [. Александров М.Т, Прохончуков А.А., 1981]. С развитием констрикторной реакции некоторые исследователи связывают и аналгезирующий эффект лазерного облучения, наблюдаемый в клинике. В эксперименте на модели посттравматической регенерации слизистой оболочки языка отмечена более быстрая и лучшая эпителизация раны после воздействия светом гелий-неонового лазера (плотность мощности 200 мВт/см 2 при однократном и 1 мВт/см 2 при ежедневном воздействии) [Виноградов А.В. и др.,1990]. Исследования ультраструктуры десны после 1, 3 и 6 сеансов ежедневного облучения светом ГНЛ, показали наличие выраженной реакции со стороны основных элементов десны. В эпителиальных клетках рогового слоя увеличивается количество светлых вакуолей и сильно осмированных глыбок, а в зернистом слое – число осмированных гранул. В мышечных волокнах появляется большое количество митохондрий, в кровеносных сосудах определяются скопления эритроцитов. Все это указывает на усиление синтеза веществ в клетках под влиянием НИЛИ [Зазулевская Л.Я. и др., (1990)]. По итогам проведенных исследований определены спектр действия и параметры для непрерывного излучения с длиной волны 0,63 мкм (лазерная головка КЛО4 для АЛТ «Матрикс»), оказывающие противовоспалительный (сосудистый), стимулирующий клеточную пролиферацию и ингибирующий эффекты. Так, стимуляция клеточной пролиферации наблюдается при плотности мощности от 10 до 100 мВт/см 2 , экспозиции на одно поле от 30 с до 5 мин; противовоспалительное и аналгезирующее действие – при плотности мощности 100-200 мВт/см 2 , экспозиции на одно поле 2-5 мин; ингибирующее действие – при плотности мощности 100-400 мВт/см 2 и экспозиции 1-6 мин. Следует отметить, что указанные величины плотности мощности лазерного излучения достигаются с помощью специальных световодов. Импульсные полупроводниковые лазеры, в частности излучающие головки инфракрасного спектра (ЛО4) к АЛТ «Матрикс», позволяют в большинстве случаев обходиться и без световодов. Когда воздействие проводится на проекцию зоны поражения с применением зеркальных и зеркально-магнитных насадок. Это зачастую эффективнее и не требует таких высоких плотностей мощности. Особенности импульсного инфракрасного (ИК) излучения позволяют реализовать методики лазерной терапии с более высокой эффективностью при значительно меньшей энергетической нагрузке (плотности мощности). Показано, что лазерное импульсное ИК излучение стимулирует процессы пролиферативной активности клеточных структур в дозе от 0,03-0,86 Дж/см 2 с максимальным эффектом при дозе 0,22 Дж/см 2 . Тогда как для ГНЛ (непрерывное излучение красного спектра) максимальный эффект достигается при 3 Дж/см 2 . Применение же в комплексном лечении больных с одонтогенными флегмонами лица сочетанноговоздействия излучениями обоих видов позволяет получить наилучшие результаты лечения, сократить продолжительность нетрудоспособности в среднем на 8 суток [Платонова В.В., 1990]. Импульсное ИК лазерное излучение в сочетании постоянным с магнитным полем 35-50 мТл можно эффективно использовать на всех этапах ортодонтического лечения. Отсутствие осложнений и рецидивов, повышение производительности труда врачей и среднего медицинского персонала в целом дает общий экономический эффект 36-43% [Кузнецова М.А., 2000]. Применение низкоинтенсивного импульсного лазерного света за счет общего (общеоздоровительного) действия расширяет показания для ортодонтического лечения зубочелюстных аномалий:

· при различных неблагоприятных условиях (гингивиты при тесном положении зубов, недостаточной гигиене полости рта, ювенильные, травматические; пародонтиты);

· при выраженных воспалительно-дистрофических осложнениях в пародонте перемещаемых зубов, а также у ослабленных детей с нарушением иммунного статуса (иммунодефициты, аллергические явления, сенсибилизация, гормонально-иммунологические расстройства и т. П.);

· при подготовке к активному ортодонтическому лечению. НИЛИ статистически достоверно позволяет купировать воспалительные процессы в 1,6 раз быстрее (в среднем на 4-6 дней) по сравнению с традиционными способами, что в свою очередь сокращает подготовительный этап в 2,3 раза, создавая оптимальные условия для начала ортодонтического лечения;

· при удалении отдельных постоянных зубов по ортодонтическим показаниям, обнажении коронок ретенированных зубов, пластике уздечки языка и уздечек губ, углублении преддверия полости рта. Применение низкоинтенсивного импульсного ИК НИЛИ в противовоспалительных и стимулирующих регенерацию дозах позволяет ускорить заживление послеоперационных ран мягких тканей полости рта без образования тяжей и рубцовых изменений в среднем на 4-5 дней по сравнению с обычными способами;

· при устранении зубочелюстных аномалий с применением современной несъемной техники лазерная терапия позволяет ликвидировать болевой синдром после фиксации и активирования элементов аппарата, предотвратить возможное ответное травматическое воспаление в области приложения ортодонтических сил, облегчая период физиологической и психологической адаптации к ортодонтическому аппарату и сокращая (в среднем на 6±1,2 месяца по сравнению с обычными способами) общие сроки лечения.

ЛТ, обеспечивая надежную ретенцию, статистически достоверно дает возможность фиксировать в нужном положении перемещенные зубы и сокращать завершающий период лечения (в среднем на 4-6 месяцев), ускоряет прорезывание задержавшихся в челюсти зубов в 4,7 раза без оперативного вмешательства, нередко являющегося методом выбора. Одновременное сочетанное применение низкоинтенсивного импульсного ИК НИЛИ и постоянного магнитного поля существенно повышает профилактическую и лечебную эффективность перемещения зачатков задержавшихся зубов (изменения положения их в челюсти и установление в направлении прорезывания) и ускоряет их прорезывание в 5,3 раза без оперативного вмешательства. Перечисленные свойства лазерного излучения позволяют дифференцированно применять его в стоматологии при заболеваниях слизистой оболочки рта, которые сопровождаются деструкцией эпителия, замедленной регенерацией, воспалением, болевым синдромом, а также при поражениях вирусного генеза (фотодинамическое действие). При воспалении излучение лазера вызывает общий и местный эффекты. Общие эффекты выражаются в увеличении неспецифических гуморальных факторов защиты (комплемент, интерферон, лизоцим), общей лейкоцитарной реакции, стимуляции костномозгового кроветворения, повышении фагоцитарной активности микро- и макрофагальной систем. Возникает десенсибилизирующий эффект, происходят активация иммунокомпетентной системы, клеточной и гуморальной специфической иммунологической защиты, повышение общих защитно-приспособительных реакций организма. Местные эффекты определяются основными элементами воспалительной реакции: экссудация, альтерация, пролиферация. Экссудация: дилатация сосудов, активация микроциркуляции с последующей вазоконстрикцией – предотвращение развития фазовых нарушений микроциркуляции и нормализация кровообращения в сочетании с нормализацией проницаемости сосудистой стенки (сосудисто-тканевого барьера), уменьшение отека ткани. Под влиянием излучения НИЛИ происходит оптимальное формирование нейтрофильного и моноцитарного барьеров, повышение фагоцитарной активности микро- и макрофагов, продукции бактерицидных субстанций и стимуляторов роста, стимуляция пролиферации, активация барьерных свойств слизистой оболочки рта. Альтерация: активация функций митохондрий и других органелл клеток, метаболизма с увеличением потребления кислорода и активацией тканевого дыхания. Одновременно подавляются анаэробные процессы, предотвращается развитие ацидоза и вторичных дистрофических изменений, в итоге облегчается регенерация поврежденных тканей. Пролиферация: стимуляция системы ДНК–РНК–белок, увеличение митотической (пролиферативной) активности клеток, активация реакции соединительной ткани. Морфологически клеточная реакция проявляется в ускорении и усилении образования фибробластического барьера (на фоне выделения стимуляторов роста), стимуляции образования грануляционной ткани, ускорении созревания фибробластов, активации образования коллагеновых волокон и созревания грануляционной ткани. В результате происходят быстрая и более физиологичная эпителизация, ускоренная и полноценная регенерация слизистой оболочки в области поражения. Терапевтическое действие (стимуляция) процессов регенерации ткани выражается в активации системы ДНК–РНК–белок, усилении синтеза нуклеиновых кислот и ядерных белков, возрастании массы ядра, увеличении синтеза цитоплазматических белков и накоплении их в период интерфазы до критического уровня. Происходят стимуляция митозов, ускоренное и увеличенное размножение клеток соединительной ткани, эпителия. Терапевтический эффект лазерного воздействия на ткани живого организма значительно усиливается в постоянном магнитном поле (ПМП) за счет усиления процессов метаболизма. Магнитолазерная терапия (МЛТ) была предложена в конце 70-х гг. и получила наибольшее распространение благодаря высокой терапевтической эффективности, обусловленной потенцированием действия магнитного поля и лазерного излучения [Мостовников В.А. и др., 1991; Полонский А.К. и др., 1981]. При сочетанном магнитолазерном воздействии, особенно при лечении глубоко расположенных патологических очагов, более эффективным является применение НИЛИ ближней инфракрасной части спектра (длина волны 0,8–1,3 мкм) по следующим объективным причинам. Во-первых, максимум пропускания кожными покровами человека электромагнитного излучения находится в этом диапазоне. Во-вторых, ПМП, ориентируя диполи в одну линию вдоль световой волны коллинеарно, способствует резонансному взаимодействию биологических структур и усиливает светопоглощение в ИК диапазоне. Импульсное ИК (λ = 0,89 мкм) лазерное излучение в большей степени влияет на стабильность клеточных мембран, тогда как в комбинации с ПМП этот фактор оказывает выраженное действие на микроциркуляторные процессы [Зубкова С.М. и др., 1991]. При проведении МЛТ применяют специальные магнитные насадки с оптимальной формой поля, что освобождает врача от необходимости учета специфического действия северного и южного полюсов магнита. Оптимальное время МЛТ составляет 1,5–2 мин при ПМП 15–75 мТл и мощности импульсного ИК НИЛИ 10–15 Вт; число процедур от 5 до 10. Для стимуляции периферического кровотока оптимальным является ПМП с индукцией 50 мТл. МЛТ оказывает гипокоагулирующее, мягкое седативное и гипотензивное действие, положительно влияет на отдельные компоненты иммунной системы [Буйлин В.А., 1997; Москвин С.В., Буйлин В.А., 2005]. Показания к лазеротерапии: пародонтит в стадии обострения, пародонтоз (гиперестезия), герпес губ и герпетический стоматит взрослых, синдром Мелькерссона-Розенталя, хронический рецидивирующий афтозный стоматит, десквамативный глоссит, хронический гингивит, язвенный гингивит, травматические повреждения слизистой оболочки рта, многоформная экссудативная эритема и др. Противопоказания: все формы лейкоплакии, а также явления пролиферативного характера на слизистой оболочке рта (папилломатоз, ограниченный гиперкератоз, ромбовидный глоссит); тяжело протекающие заболевания сердечно-сосудистой системы (атеросклеротический кардиосклероз с выраженным нарушением коронарного кровообращения, церебральный склероз с нарушением мозгового кровообращения II–Ш стадии), гипертоническая болезнь III стадии, гипотония; выраженная и тяжелая степень эмфиземы легких; туберкулезная интоксикация; опухоли злокачественные; доброкачественные опухоли при локализации в области головы и шеи; тяжелая степень сахарного диабета в некомпенсированном состоянии или при неустойчивой компенсации; заболевания крови; состояние после инфаркта миокарда (в течение 6 мес после эксцесса).

3.2 Хирургия

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.
Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют? Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани.

В ЛАЗЕРНОЙ ХИРУРГИИ

Применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных видов хирургических лазеров, работающих на разных лазерных активных средах. Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами. Хирургические лазерные системы обеспечивают: эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

  • сухое операционное поле;
  • минимальное повреждение окружающих тканей;
  • эффективный гемо- и аэростаз;
  • купирование лимфатических протоков;
  • высокую стерильность и абластичность;
  • совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств в урологии, гинекологии, оториноларингологии, ортопедии, нейрохирургии и т. д. По нашему убеждению, наилучшим выбором для хирурга по своим физическим свойствам является гольмиевый лазер. Поэтому основное внимание мы уделяем именно Гольмиевым лазерам в хирургии.

КТР - лазер

Это хорошо известный неодимовый лазер на гранате (Nd:YAG), спаренный с нелинейным кристаллом титанил фосфата калия (КТР), который удваивает частоту излучаемого света до получения длины волны 532 нм, расположенной в зеленой области спектра. Лазерное лечение сосудистых нарушений основано на тепловом воздействии лазерного излучения на сосуды без изменения структуры прилегающих тканей. Зеленое излучение КТР-лазера проникает сквозь поверхностные слои кожи и хорошо поглощается гемоглобином крови. В результате в поврежденном кровеносном сосуде происходит выделение большого количества тепла, кровь свертывается, а внутренняя стенка разрушается. В дальнейшем патологический сосуд зарастает соединительной тканью, а кожа обретает естественный цвет. На практике при этом важно учитывать время тепловой релаксации сосуда, которое соответствует периоду, необходимому для передачи тепла за пределы сосуда. Это время зависит, прежде всего, от диаметра сосуда и может изменяться от 1 мс (для сосуда диаметром 50 мкм) до 80 мс (для сосуда диаметром 400 мкм). При облучении слишком короткими импульсами очень интенсивным лазером кровеносный сосуд поглощает достаточно большое количество энергии, которая не успевает рассеиваться. Из-за этого внутри сосуда значительно повышаются температура и давление, что приводит к разрыву его стенки и к микрокровоизлиянию. Клинически это проявляется в виде пурпуры или микрогеморрагий. С увеличением длительности лазерного импульса можно получить режим селективной коагуляции, когда при постепенном повышении температуры стенки сосуда происходит его спаивание и исчезновение. Длительность импульса при этом должна быть больше, чем время релаксации сосуда, но ограниченной, иначе большое количество тепла напрасно рассеивается наружу, и в обширной зоне окружающей дермы могут произойти значительные изменения. На месте лазерного воздействия восстанавливается естественный цвет кожного покрова. Ткани вокруг сосуда практически не поглощают излучение лазера и остаются неповрежденными, поэтому после операции не происходит образования рубцов.

3.4 Фотоомоложение кожи

При поглощении излучения КТР-лазера гемоглобином крови помимо фотокоагуляции кровеносных сосудов и очищения кожи от пигментных и васкулярных поражений можно получить и другой эффект - фотоомоложение кожи. Фотоомоложение - это видимое улучшение состояния кожи при помощи лазера или другого источника света. Что происходит непосредственно в коже при облучении ее мощными световыми импульсами? При поглощении света и нагревании стенок сосудов те в свою очередь передают тепло наружу. Селективное нагревание дермального коллагена (до температуры 55 град. С) вызывает стимуляцию в соединительной ткани особых клеток - фибробластов, которые начинают активно синтезировать новый коллаген. Таким образом, в увядающей коже возникают новые волокна коллагена и эластина, и она вновь обретает молодой, свежий вид. Синтез нового коллагена это биохимический процесс, требующий определенного времени, поэтому результат становится заметным не сразу. Всего может потребоваться 3 - 6 сеансов с интервалом в 3 недели. После курса процедур происходит улучшение цвета и структуры кожи, лицо подтягивается, улучшаются его контуры, сужаются поры. Благодаря общему лифтингу разглаживаются мелкие и средние морщины. Таким образом, фотоомоложение с помощью КТР-лазера - это новый и эффективный неинвазивный метод омоложения кожи с минимальным риском и без длительного периода восстановления для пациента.

Лазерная дермабразия - это:

  • малая травматичность проводимых операций;
  • минимальное тепловое повреждение и быстрое восстановление кожного покрова;
  • минимальный риск послеоперационных рецидивов и осложнений;
  • быстрое заживление ран

Механизм действия пилинга

Основан на способности кожи к быстрому самовосстановлению. Любое травмирующее воздействие - ожог, ссадина, порез - вызывает незамедлительную реакцию организма. При малейшей травме на защиту бросаются все силы - начинается процесс регенерации. Однако при восстановлении кожного покрова старые материалы не используются. Дело в том, что при травме происходит уничтожение деформированных клеток, а деятельность молодых и здоровых поощряется как никогда. Конечно, помимо регенерации в коже непрерывно протекают и другие процессы обновления. Это, например, программа деятельности кератиноцитов - основных клеток эпидермиса. По сути эпидермис состоит из слоев кератиноцитов разного возраста. И каждый слой выполняет свою физиологическую задачу (скажем, самый верхний роговой - это плотный защитный барьер из отмерших клеток). С годами в жизненной программе кератиноцитов могут начаться сбои, тогда клетки вместе с накопленными повреждениями задерживаются в промежуточном слое. Исходящий от них негатив (как инфекционные болезни) неминуемо сказывается на деятельности других клеток.
В результате замедляется клеточное деление в живых тканях (они истончаются), а роговой слой, наоборот, утолщается, придавая коже вид пергамента. В этой ситуации пилинг также сослужит хорошую службу, одновременно создавая предпосылки к тщательному очищению верхнего барьера и способствуя проведению контролируемого процесса обновления. Вызываемое отшелушивание кожи как искусственное повреждение эпидермиса, проводится по избирательно-бережным методикам, без боли и дискомфорта. Если регенерация происходит нормально, то кожа после реабилитации выглядит гораздо лучше. Ороговевший слой становится более тонким и однородным, а дерма упругой.

3.5 Удаление татуировок и пигментных пятен

Татуировки обычно легче сделать, чем удалить. Мода на татуировки прошла через многие страны. До 20 миллионов американцев имеют сейчас многоцветные украшения на различных частях тела, и опросы показывают, что по крайней мере половина из них хотят избавиться от этого легкомысленного поступка в молодости. Наша страна не испытала пока повального увлечения татуировкой, но не следует игнорировать опыт других. Существует много способов удаления красящего вещества из кожи, основанных на различных механизмах деструктивного воздействия. Все эти методы были основаны на одном принципе - удалении участков кожи с татуировкой: дермабразия кожи с помощью алмазной фрезы, хирургические иссечения, химическое удаление изображения путем инъекции специальных кислот, криохирургия. Однако косметический результат после такого удаления оставляет желать лучшего: слишком высока вероятность появления эстетически неприемлемых рубцов, которые могут оказаться еще более нежелательными, чем сама татуировка.

Лазерное удаление татуировок

За последние годы существенный прогресс приобрел метод лазерного выведения татуировок. За это время был получен огромный клинический материал, а лазерные методы стали наиболее продвинутыми, если не единственно приемлемыми с точки зрения получаемого косметического результата, способами выведения татуировок. Для разрушения красителей, составляющих основу татуировки, лазер должен излучать такой свет, который поглощается данным красителем. Для этого используется специальный режим работы лазера "с модуляцией добротности" (Q-switched), который позволяет добиться высокой мощности лазерных импульсов за счет укорочения их длительности. Для вывода излучения в таких лазерах используется шарнирный зеркальный световод, позволяющий доставить лазерное излучение к рабочему инструменту врача. Гранулы красителей тату избирательно поглощают лазерное излучение, разбиваются на мелкие фрагменты и постепенно выводятся через лимфатическую систему. По сравнению с другими методами лазерное удаление татуировок является более безопасным методом, так как лазерное излучение воздействует только на краситель, а не на окружающую кожу. Лазер позволяет выводить татуировки без рубцов и шрамов. Для полного выведения большинства татуировок и дермальных пигментаций требуется проведение 2 - 5 сеансов. Для выведения больших по площади татуировок может потребоваться более 10 сеансов. Количество сеансов зависит от нескольких факторов, таких как возраст татуировки, ее размеры и расположение, глубина, тип и цвет пигмента. Трудны для выведения зеленые и желтые татуировки. Обычно профессионально выполненные татуировки требуют больше сеансов по их удалению, чем любительские. Встречаются такие стойкие виды красителей, которые остаются видными после серии процедур, хотя и значительно обесцвечиваются.

3.6 Применение лазера в лечении ЛОР-заболеваний

В настоящее время лазерное излучение все чаще и чаще находит применение в медицине, в том числе и влечении ЛОР-заболеваний. Положительные характеристики применения лазера состоят в том, что он уменьшает воспалительную реакцию, обладает выраженным анальгезирующим (обезболивающим) эффектом, а также при этом происходит более активное восстановление пораженной ткани. Применяемые в медицине режимы лазерного излучения не оказывают вредного влияния на организм в целом. Разрушение тканей лазером практически бескровно, что связано с коагуляцией (свертыванием) крови в просвете капилляров в зоне коагуляционного некроза и образованием так называемого лазерного тромба. Среди патологических состояний глотки, требующих лазерной коррекции наибольший интерес представляют различные новообразования, хронический гипертрофический боковой и гранулезный фарингит (воспаление глотки), остатки небных миндалин после перенесенной ранее тонзиллэктомии (удаления гланд) и ронхопатия.

Применение лазера для лечения патологии глотки значительно эффективнее традиционных методов хирургии:

  • вмешательство не дает осложнений в послеоперационном периоде,
  • оно легко переносится больными,
  • является максимально щадящим к тканям,
  • не требует проведения антибактериальной и противовоспалительной терапии в послеоперационном периоде,
  • не нарушает трудоспособность больных.

Для эндоскопической коррекции патологии полости носа широко применяется диодный лазер. Он успешно используется для лечения таких заболеваний, как:

  • хронический гипертрофический ринит, особенно при увеличении средних и задних концов носовых раковин,
  • рубцовые процессы полости носа после перенесенных ранее хирургических вмешательств и травм,
  • полипозный этмоидит (воспаление решетчатой пазухи, сочетающееся наличием в ее полости полипов),
  • рецидивирующий полипоз носа,
  • рецидивирующие носовые кровотечения,
  • новообразования.

Довольно широкое распространение в последнее время получила лазерная хирургия гортани. Лазер помогает справиться с такой патологией, как различные доброкачественные и злокачественные новообразования гортани, последствия хронических воспалительных заболеваний гортани, а также различные формы нарушения иннервации ее, т.е. параличи и парезы. Грануляции или рубцовые ткани гортани полностью "выпариваются" лазером. При этом для визуального контроля за процессом лазерной хирургии используется эндоскопическая техника. После такой операции, как трахеотомия, а также такой манипуляции, как интубация трахеи, при длительном нахождении канюли или интубационной трубки в гортани на ее поверхности может образоваться так называемая гранулема. Лечение постинтубационных и посттрахеотомических гранулем гортани и трахеи с помощью лазера также весьма эффективно, так как. в большинстве случаев позволяет полностью восстановить просвет дыхательных путей.

Весьма успешно применение лазерной хирургии в лечении таких заболеваний уха, как:

  • новообразования,
  • посттравматические деформации,
  • хронический гнойный средней отит.

В хирургии ЛОР-болезней имеется большое количество методов и способов коррекции гиперпластических процессов, которые характеризуются разрастанием патологический ткани, а также сужений и различных дефектов наружного и среднего уха. Лазерная хирургия широко применяется и для лечения этой патологии. В области наружного слухового прохода наиболее часто встречаются папилломы и гемангиомы, которые легко удаляются лазером. Этим же методом лазерной хирургии проводится удаление полипов и грануляций (разрастаний соединительной ткани) из полости среднего уха с большими дефектами барабанной перепонки при таком заболевании, как хронический гнойный средний отит. Особое место в хирургии гиперпластических процессов наружного уха занимают келлоидные рубцы ушных раковин. Традиционная хирургия не способна полностью решить эту проблему. При этом отмечается большое число рецидивов. Введение в практику лазерной хирургии лечение келлоидных рубцов стало более эффективным. С помощью лазера и операционного микроскопа во многих случаях удается очень экономно иссечь келлоидный рубец с неплохим косметическим эффектом. При этом риск рецидива в послеоперационном периоде низок. Весьма ценным эндоскопические вмешательства с применением лазера оказываются при микрохирургических операциях в барабанной полости, когда необходимо с большой точностью удалять микроскопические участки патологических тканей, не разрушая при этом целостности тонких анатомических структур среднего и внутреннего уха. Некоторые из нас страдают от постоянного покраснения глаз (когда видны красные вены), даже если Вы хорошо выспались! Некоторые пытаются применить различные медицинские препараты, но безуспешно. Причем, мы уверены, что сами покраснения не вызваны сухостью глаз либо аллергической реакцией на какой-то продукт. Что говорят по этому поводу ведущие офтальмологи...

3.7 Офтальмология

Во-первых, всем необходимо знать, что если видны красные венки в глазу - это вполне нормальное явление, и из этого ненужно делать трагедию! Некоторые, как только видят красные венки, пытаются применять различные препараты, которые "обещают" справиться с данной проблемой, и забывают проконсультироваться с врачом. Но как утверждают специалисты, применение некоторых препаратов (к примеру, известный всем Visin) которые уменьшают венки, делают их менее заметными, способно привести к совершенно обратному результату: по завершению применения препарата вены могут еще больше расшириться и стать более заметными. Расширение вен - это вечная проблема, с которой сталкиваются люди, которые постоянно применяют (злоупотребляют!) какие-то глазные медицинские препараты. Причины постоянной красноты глаз: Хроническая краснота глаз может быть вызвана определенным видом раздражения. Наиболее часто покраснение глаз вызывает их сухость и аллергия. Сухость глаз не всегда способна вызывать их покраснение. Кроме того, с сухостью глаз (на ранней и средней стадии) отлично справляются специальные капли против сухости глаз. Для людей, страдающих от тяжелой формы сухости глаз, в клинике предлагают специальную процедуру (пунктационная обтурация). При данной процедуре, небольшая пластиковая "пробка", напоминающая миниатюрную метку для мяча в гольфе, помещается в одни из двух каналов, который проходит от глаза к носу. Эта перегородка препятствует попаданию слезы в нос, тем самым, задерживая ее дольше в самом глазу. Аллергия - еще одна типичная причина красноты глаз. Самое оптимальное лечение красноты глаз аллергического происхождения - содержать пациента в таких условиях, где бы не было предметов, способных вызвать аллергию. Однако, как известно, порой бывает очень сложно определить, чем же вызвана аллергия. Порой аллергию могут спровоцировать линзы, которые Вы носите. На рынке имеются медицинские препараты, которые снижают некоторые аллергические реакции. Если краснота вызвана линзами, то на сегодняшний день есть такая услуга как лечение лазером. В итоге, зрение практически полностью восстанавливается, и отпадает всякая необходимость в использовании линз либо очков. Краснота глаз может быть также вызвана большой нагрузкой на глаза, просиживанием часами у компьютера, нехваткой витамина А. В любом случае, перед тем как принять те или иные капли, снимающие красноту глаз, следует непременно проконсультироваться с врачом, пройти обследование и лишь затем отправляться в аптеку за медикаментами.

4. Заключение

Свет использовался для лечения разнообразных болезней испокон веков. Недаром Эскулап – бог медицины – был сыном бога света Феба Аполлона. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик. В наше время лазер важный прибор, без которого мы непредставляем своей жизни. Наука развивается широкими шагами. Нам надо только следить за ее успехами и применять достижения в повседневной жизни. Одно из главный новшеств в медицине, связано с лазерами. Ведь теперь с их помощью можно проводить операции без больших разрезов, без боязни занести инфекцию. Такой вид лечения позволит больным принимать меньше таблеток и препаратов, что позволит уменьшить нагрузку на их печень и почки. В конце я бы хотел сказать, что у меня есть надежда, что в будущем, если мне понадобится медицинская помощь, то она будет оказываться с помощью лазера.

Список литературы:

1.Бруннер В. Справочник по лазерной технике: Пер. с нем. . - М.: Энергоатомиздат, 1991
2.Звелто О. Принципы лазеров . - М.: Мир, 1990

3.Тарасов Л.В. Физика процессов в генераторах когерентного оптического излучения . - М.: Радио и связь, 1981



Понравилась статья? Поделитесь ей
Наверх