Микроклимат для тела и естественное. Микроклимат помещений и его гигиеническая оценка. Гигиена, как медицинская наука, профилактической направленности

Прочитайте:
  1. Plathelmintes. Тип Плоские черви. Классификация. Характерные черты организации. Медицинское значение.
  2. V2: Кости нижней конечности, их соединения. Особенности строения стопы человека. Рентгеноанатомия суствов нижней конечности. Разбор лекционного материала.
  3. VI. Соотношения и взаимное влияние духовных и душевных переживаний при аффективных психозах
  4. Адсорбционные равновесия и процессы на подвижной и неподвижной границах раздела фаз. Влияние различных факторов на величину адсорбции.
  5. Акселерация, ретардация, децелерация. Социально-гигиеническое значение изменения темпов возрастного развития.

Микроклимат – комплекс физических свойств воздуха в определенный момент времени и в конкретном помещении или на другой строго ограниченной территории. На формирование микроклимата влияют: технологический процесс, климат местности, сезон года и условия отопления и вентиляции. Показателями, характеризующими микроклимат в помещениях, являются: температура воздуха, температура поверхностей ограждающих конструкций, относительная влажность воздуха, скорость движения воздуха.

Следует отметить, что при небольших отклонениях физических факторов воздушной среды от зоны комфорта самочувствие здоровых людей может не измениться, тогда как у больных людей часто возникают, так называемые, метеотропные реакции. Особенно чувствительны к изменению метеорологических факторов внешней среды люди, страдающие сердечно-сосудистыми, нервно-психическими и простудными заболеваниями.

При гигиенической оценке влияния физических факторов воздушной среды на организм человека необходимо учитывать весь комплекс их: атмосферное давление, температуру воздуха, влажность и скорость движения. Для создания комфортных условий самочувствия людей рекомендуются следующие параметры факторов в помещениях (микроклимат помещений):

1) средняя температура воздуха 18-200 (для детей 20-220), в палатах для недоношенных детей - 250, в перевязочных и процедурных кабинетах - 220, операционных - 210, родовых - 250. Перепады температуры воздуха в горизонтальном направлении от наружной стены до внутренней не должны превышать 20, в вертикальном - 2,50 на каждый метр высоты. В течение суток колебания температуры воздуха в помещении при центральном отоплении не должны превышать 30;

2) величина относительной влажности воздуха при указанных температурах может колебаться в пределах 40-60 % (зимой - 30- 50%);

3) скорость движения воздуха в помещениях должна быть 0,2 - 0,4 м/с, на выходе из приточных отверстий вентиляционных каналов больничных палат - не более 1 м/с, а в ванных, душевых, физиотерапевтических кабинетах - 0,7 м/с. Особенно важно соблюдение этих условий в больницах.

Все жизненные процессы в организме сопровождаются непрерывным выделением теплоты в окружающую среду. Для нормального протекания физиологических процессов необходимо, чтобы выделяемая организмом теплота полностью отводилась в окружающую среду. Нарушение теплового баланса может привести к перегреву или переохлаждению.

Различают монотонный микроклимат, когда его параметры мало изменяются в течение рабочей смены (ткацкие, швейные цеха, обувное производство, машиностроение и т.п.), и динамичный - быстрое и значительное изменение параметров микроклимата (сталеплавильные, литейные цеха и т.п.).

По степени воздействия на тепловое состояние человека параметры микроклимата подразделяются на оптимальный (нейтральный), нагревающий и охлаждающий.

Оптимальный (нейтральный) микроклимат - такое сочетание его параметров, которое при воздействии на человека в течение длительного времени обеспечивает тепловой баланс организма, точнее примерное равенство между величиной теплопродукции организма человека и его теплоотдачей в окружающую среду. Оптимальный микроклимат обеспечивает ощущение комфорта и создает предпосылки для высокого уровня работоспособности.

Охлаждающий микроклимат - сочетание параметров, при котором суммарная теплоотдача человека в окружающую среду превышает величину теплопродукции организма, что приводит к образованию общего и/или локального дефицита тепла в теле человека.

Нагревающий микроклимат - сочетание его параметров, при котором суммарная теплоотдача человека в окружающую среду меньше величины теплопродукции организма, что приводит к накоплению тепла в организме.

Отрицательное влияние микроклимата

Охлаждающий микроклимат способствует возникновению сердечно-сосудистых заболеваний, заболеваний органов дыхания, опорно-двигательного аппарата, приводит к обострению язвенной болезни, радикулита. Даже при кратковременном влиянии холода в организме происходит перестройка регуляторных и гомеостатических систем, изменяется иммунный статус организма. При выраженном охлаждении организма повышается возможность тромбообразования.

Влияние нагревающего микроклимата связано с напряжением функциональных систем организма человека, что приводит к нарушению состояния здоровья, уменьшения работоспособности и производительности труда. При определенных значениях параметров нагревающий микроклимат может привести к заболеваниям общего характера: наблюдаются головные боли, повышенная потливость и утомляемость, увеличивается риск смерти от сердечно-сосудистой патологии (гипертонической и ишемической болезни сердца,болезней артерий и капилляров). Особенно подвержены тепловым ударам лица, имеющие массу тела выше нормы.

Дата добавления: 2015-02-06 | Просмотры: 3961 | Нарушение авторских прав


| | | | | | | 8 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Цель занятия: изучение влияния микроклиматических факторов на организм человека, измерение параметров микроклимата, гигие- ническая оценка отдельных показателей и микроклимата в целом.

При подготовке к занятию студенты должны проработать следу- ющие вопросы теории.

1. Погода, климат, микроклимат.

2. Физические свойства воздуха, их гигиеническое значение.

3. Комплексное влияние метеорологических факторов окружаю- щей среды на организм, его оценка. Теплообмен организма с окружающей средой. Индекс тепловой нагрузки (ТНС).

4. Гигиенические нормативы микроклимата помещений различ- ного назначения.

После освоения темы студент должен знать:

Методику определения и оценку микроклимата аптечных помещений;

Определение и оценку комплексного влияния метеорологичес- ких факторов окружающей среды на организм работающих;

уметь:

Оценить результаты исследований на соответствие гигиени- ческим нормативам;

Оценить условия труда персонала аптек по параметрам мик- роклимата;

Использовать основные нормативные документы и информа- ционные источники справочного характера для разработки гигиенических рекомендаций по оздоровлению микроклима- та аптечных помещений.

Учебный материал для выполнения задания

Атмосфера имеет многослойную структуру. К земной поверх- ности прилегает тропосфера - наиболее плотный слой воздуха размером от 8 до 18 км в разных широтах. Тропосфера отличается неустойчивостью физических свойств (колебаний температуры, влажности, атмосферного давления), наличием водяных паров, большого количества пыли, сажи, разнообразных токсических веществ, газов, микроорганизмов. В ней постоянно происходит перемещение воздушных масс в разных направлениях. Над тропосферой находится стратосфера - слой воздуха размером до 40- 60 км, характеризующийся разреженностью воздуха. Под влиянием космического и коротковолнового ультрафиолетового излучения Солнца в результате ионизации молекул газов воздуха, особенно кислорода, в стратосфере образуются молекулы озона, составляющие озоновый слой атмосферы. Озоновый слой задерживает коротковолновое УФ-излучение, которое, достигая поверхности Земли, может вызвать разнообразные негативные эффекты в биосфере, а в популяции человечества повысить уровень онкологической заболеваемости. Над стратосферой простирается еще более разреженный слой воздуха размером до 80 км - мезосфера, выше следует термосфера - слой атмосферы высотой до 300 км, температура в котором достигает 1500 ?С. За ней располагается ионосфера - слой ионизированного воздуха, размеры которого в зависимости от времени года и суток составляют 500- 1000 км. Еще выше последовательно размещаются экзосфера (до 3000 км), плотность которой почти не отличается от плотности безвоздушного космического пространства, и верхняя граница атмосферы Земли - магнитосфера (от 3000 до 50000 км), в состав которой входят пояса радиации.

В последние десятилетия была установлена биологическая активность постоянного геомагнитного поля (ГМП) Земли. Изменения (или пульсации) геомагнитного поля принято делить на регулярные, устойчивые, непрерывные (Pс - pulsations continues), которые регистрируются в утренние и дневные часы, и иррегулярные, шумоподобные, импульсивные (Pi - pulsations irregular), которые отмечаются в вечерние и ночные часы. Все виды иррегулярных пульсаций являются признаками геомагнитных возмущений, в то время как регулярные пульсации наблюдаются и в очень спокойных условиях. Геомагнитное поле Земли является существенным компонентом среды обитания человека. Если режим устойчивых коле-

баний является «привычным» для биосистем, то изоляция от него может иметь негативные последствия для организма. В результате проникновения в атмосферу потока летящих на огромной скорости от Солнца заряженных частиц (так называемого солнечного ветра), образующихся в периоды повышения солнечной активности, возникают возмущения ГМП, которые выражаются в глобальном возбуждении обычных пульсаций его напряженности (геомагнитные бури), регистрируемых по всему земному шару в течение десятков часов. В формирование естественного электромагнитного фона Земли входит мировая и локальная грозовая активность. Магниторецепторы у человека находятся в структурах головного мозга и в надпочечниках. Геомагнитные возмущения могут оказывать десинхронизирующее влияние на биологические ритмы и другие процессы в организме, способствовать росту числа инфарктов миокарда и инсультов, а также числу дорожно-транспортных происшествий и аварий самолетов. Однако длительное пребывание людей в экранированных помещениях в условиях дефицита естественного ГМП вызывает ухудшение их самочувствия и состояния здоровья. Дефицит ГМП влечет за собой нарушения со стороны центральной нервной системы: дисбаланс основных нервных процессов в виде преобладания торможения, ухудшение координации движений и снижение уровня внимания, уменьшение скорости двигательной реакции на световой и звуковой раздражители. Могут проявляться нарушения со стороны сердечно-сосудистой системы, иммунной и эндокринной систем. Человек попадает в гипогеомагнитные условия в жилых многоэтажных зданиях, построенных из железобетонных конструкций, в вагонах метро, салонах легковых автомобилей, в помещениях самолетов, морских судов, на подводных лодках, в банковских хранилищах.

С гигиенической точки зрения воздушная среда не однородна. Учитывая разнообразие физических свойств и вредных примесей, а также условия формирования и загрязнения воздуха, различаются несколько категорий воздушной среды: атмосферный воздух, воздух жилых и общественных зданий и воздух промышленных помещений.

Характеристика метеорологических факторов

Физические свойства атмосферного воздуха нестабильны и связаны с климатическими особенностями географического региона. Погода - это совокупность физических свойств околоземного слоя

атмосферы (барометрического давления, температуры, влажности, скорости и направления ветра, солнечной радиации) над конкретной территорией за определенный промежуток времени.

Комплексная характеристика погоды называется типом погоды. С гигиенической точки зрения (влияния на здоровье человека) удоб- на клиническая классификация типов погоды.

1. Клинически оптимальный тип погоды оказывает благоприятное, щадящее действие на организм человека, вызывает бодрое настроение - это погода с относительно ровными метеорологичес- кими свойствами: умеренно влажная или сухая, тихая (скорость ветра не выше 3 м/с), ясная (солнечная), межсуточные колебания температуры воздуха не превышают 2?С, атмосферного давления - 3 мм рт.ст.

2. Клинически раздражающий тип погоды - погода с нарушением оптимального уровня одного или нескольких метеорологических параметров: это погода солнечная и пасмурная, сухая и влажная (не выше 90% относительной влажности), межсуточные колебания температуры воздуха не превышают 4 ?С, атмосферного давления - 6 мм рт.ст., скорость ветра не более 9 м/с.

3. Клинически острый тип погоды характеризуется резкими изменениями метеорологических параметров: это погода сырая (выше 90% относительной влажности), дождливая, пасмурная и очень ветреная (скорость ветра более 9 м/с), межсуточные колебания температуры воздуха превышают 4 ?С, атмосферного давления - более 6 мм рт.ст.

Изменения погоды могут происходить постепенно (периодически) или резко (апериодически) в течение определенного периода (сутки, недели). В отличие от периодических изменений погоды резкие колебания метеорологических раздражителей (передвижение воздушных масс, барометрическое давление, температура и др.) являются неожиданными для организма. Они создают повышенную нагрузку на регуляторный аппарат организма человека, вызывая перенапряжение физиологических механизмов адаптации, что приводит к различным нарушениям функций организма (гелиометеотропным реакциям) у метеочувствительных (или метеолабильных) людей. Часто это проявляется в снижении работоспособности, быстрой утомляемости и ухудшении самочувствия: нарушение сна, головные боли, головокружение, шум в ушах, боли в области сердца, ногах, руках, болевые ощущения в закрытых полостях тела (суставах,

полостях зубов). Гелиометеотропные реакции можно рассматривать как клинический синдром дезадаптации, т.е. метеоневрозы дезадаптационного происхождения. При этом снижается чувствительность к лекарственным препаратам, что может привести к их передозировке. В настоящее время доказано отрицательное влияние неблагоприятной погоды на течение заболеваний сердечно-сосудистой, дыхательной, пищеварительной и нервной систем, кожных и глазных болезней, а также рост травматизма, автокатастроф, случаи убийств и суицидов. Часто гелиометеотропные реакции наблюдаются у детей грудного возраста, затем в 5-6 и 11-14 лет, когда происходит физиологическая перестройка механизмов адаптации. Возрастает чувствительность у женщин в период беременности и родов, что выражается в утяжелении токсикозов беременности, увеличении числа угрожающих абортов, преждевременных родов. Профилактика гелиометеотропных реакций проводится с помощью закаливания, рациональной одежды и обуви, улучшения условий труда и отдыха, нормализации микроклимата помещений, применения специфических и неспецифических средств и медикаментов.

Климат - статистический многолетний режим погоды, характерный для конкретной местности в силу ее географического положения. По данным среднегодовых температур на земле различают 7 климатических поясов: тропический (0?13? географической широты; среднегодовая температура = +20...+24 ?С); жаркий (13-26? северной и южной широты и +16...+30 ?С); теплый (26-39? широты и +12...+16 ?С); умеренный (39-52? широты и +8...+12 ?С); холодный (52-65? широты и +4...+8 ?С); суровый (65-78? широты и 0.. -4 ?С); полярный (69-90? широты и -4 ?С и ниже).

В соответствии с упрощенной классификацией на территории России с учетом средних температур января и июля выделены 4 кли- матических района: 1-й - холодный с температурой января от -28 до -14 ?С и июля от 4 до 10 ?С, 2-й - умеренный с температурой января от -14 до -4 ?С и июля от 10 до 22 ?С, 3-й - теплый с температурой января от -4 до 0 ?С и июля от 22 до 28 ?С, 4-й - жаркий с температурой января выше -4 ?С и июля от 28 до 34 ?С. Кроме того, выделяются местные разновидности климата: морской, континентальный, степной, горный и другие.

В медицинской практике используется деление климата на щадящий и раздражающий. Щадящий климат характеризуется незначительными колебаниями метеорологических факторов и минималь-

ными требованиями к адаптационным физиологическим механизмам организма человека, раздражающий климат отличается значительными колебаниями метеорологических факторов, требующих большего напряжения адаптационного механизма организма. Примером щадящего являются лесной климат средней полосы России, климат Южного берега Крыма. Раздражающим является холодный климат Севера, высокогорный климат (выше 2000 м), жаркий климат степей и пустынь. Эта классификация используется и при гигиеническом нормировании некоторых вредных факторов среды.

Акклиматизация - это приспособление организма человека к новым климатическим условиям. Достигается акклиматизация путем выработки у людей динамического стереотипа, соответствующего изменившимся климатическим условиям, за счет использования особенностей устройства жилых и общественных зданий, одежды и обуви, питания и ритма жизни. При акклиматизации к низким температурам наблюдается повышение обмена веществ, увеличение теплопродукции, объема циркулирующей крови, снижение в крови витаминов С, В1, нарушение синтеза витамина Д. Адаптация к жаркому климату обычно происходит сложнее, чем к холодному; при этом отмечаются изменения со стороны сердечно-сосудистой системы (урежение пульса, снижение уровня АД и на 15- 25 мм рт.ст.), уменьшение частоты дыхания, увеличивается потовыделение, происходит снижение температуры тела и основного обмена на 10-15%.

Выделяют три фазы акклиматизации: начальную, при которой в организме происходят физиологические приспособительные реак- ции; фазу перестройки динамического стереотипа, которая может развиваться благоприятно или неблагоприятно и тогда третья фаза не наступает; фазу устойчивой адаптации.

Микроклимат представляет собой комплекс физических свойств воздуха, оказывающих влияние на теплообмен человека с окружающей средой, на его тепловое состояние в ограниченном пространстве (в отдельных помещениях, городе, лесном массиве и т.п.) и определяющих его самочувствие, работоспособность, здоровье и производительность труда. Показателями микроклимата являются температура и влажность воздуха, скорость движения воздуха и тепловое излучение окружающих предметов и людей.

Состояние микроклиматических факторов обусловливает особенности терморегуляции организма человека, которая в свою очередь определяет тепловой баланс. Он достигается соотношением процессов

теплопродукции и теплоотдачи организма. Теплопродукция происходит при окислении пищевых веществ, а также при сокращении скелетной мускулатуры (Q прод.). Кроме того, тело человека может получать конвекционное и радиационное тепло от окружающего воздуха и нагретых предметов, если их температура выше температуры кожи открытых частей тела (Q внеш.). Основные механизмы отдачи тепла телом человека: кондукция в прилегающие к коже слои воздуха и менее теплые предметы (Q конд.) и последующая конвекция нагретого воздуха (Q конв.), излучение по направлению к менее нагретым предметам (Q изл.), испарение пота с кожи и влаги с поверхности дыхательных путей (Q исп.), нагревание до 37 ?С вдыхаемого воздуха Qнагр.). Тепловой баланс в общем виде может быть представлен уравнением:

Опрод. + Qвнеш. - (< >) Qконд. + Qконв. + Qизл. + Оисп. + -нагр.

Нормальная жизнедеятельность организма и высокая работоспособность возможны лишь в том случае, если сохраняется темпе- ратурное постоянство организма в определенных границах (36,1- 37,2 ?С), имеется тепловое равновесие его с окружающей средой, т.е. соответствие между процессами теплопродукции и теплоотдачи.

Неблагоприятное влияние микроклимата обусловлено комплексным воздействием физических факторов воздушной среды: повышением или понижением температуры, влажности или скорости движения воздуха. При повышенной температуре воздуха высокая влажность препятствует испарению пота и влаги и увеличивает опасность перегревания организма. Высокая влажность при низкой температуре увеличивает опасность переохлаждения, поскольку влажный воздух, заполняющий поры одежды, в отличие от сухого - хороший проводник тепла. Высокая скорость движения воздуха увеличивает теплоотдачу через конвекцию и испарение и способствует более быстрому охлаждению организма, если его температура ниже температуры кожи, и, наоборот, увеличивает тепловую нагрузку на организм при температуре, превышающей температуру кожи.

Для провизора сведения о микроклимате помещений необходимы для оценки условий труда в аптечных учреждениях, поскольку микроклимат оказывает влияние на терморегуляцию организма, для оценки эффективности вентиляции и особенностей производственной среды, в которой хранятся, изготавливаются и выдаются лекарственные средства. Сохранность многих лекарственных препаратов и

лекарственных форм, их биологическая активность зависят от микроклиматических условий, терморегуляции людей.

Гигиенической нормой микроклимата является тепловой комфорт, который определяется сочетанным действием всех микрокли- матических компонентов, обеспечивающих оптимальный уровень физиологических реакций организма и наименьшее напряжение терморегуляторной системы, т.е. оптимальное тепловое состояние человека. При нормировании микроклимата устанавливаются оптимальные величины его параметров и допустимые границы их колебаний, характеризующиеся незначительными общими или локальными дискомфортными теплоощущениями и умеренным напряжением механизма терморегуляции, т.е. включением приспособительных (адаптационных) реакций организма. В зависимости от состояния (перегревание или переохлаждение) эти реакции проявляются в умеренном расширении (или сужении) сосудов кожи, увеличении (или уменьшении) потоотделения, учащении (или урежении) пульса. В этих условиях возможно продолжительное пребывание человека без нарушения работоспособности и опасности для здоровья. В условиях, близких к комфорту, нормативы микроклимата помещений могут быть едиными для взрослых и детей; при установлении допустимых колебаний показателей микроклимата должен учитываться индивидуальный характер терморегуляции людей, обусловленный полом, возрастом, весом, степенью физиологических приспособительных возможностей. Нормируемые параметры микроклимата должны гарантировать сохранение здоровья и работоспособности даже человеку с пониженной индивидуальной переносимостью колебаний факторов окружающей среды.

Наиболее оптимальные величины параметров микроклимата для жилых помещений: температура 18-20 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1-0,2 м/с.

Гигиенические параметры микроклимата в помещениях нормируются в зависимости от климата для теплого и холодного периода года. Оптимальной температурой для холодного климатического района считается 21-22 ?С, умеренной - 18-20 ?С, теплой - 18-19 ?С, жаркой - 17-18 ?С. Расчетные нормы температуры в помещениях дифференцируются в зависимости от их функционального назначения. Так, в большинстве аптечных помещений (ассис- тентская, асептическая, дефектарская, заготовочная, фасовочная, помещения для хранения лекарственного сырья и лекарственных

средств) наиболее благоприятная температура воздуха - 18 ?С; в помещениях лечебно-профилактических учреждений: в операцион- ной, предоперационной, реанимационном зале, палатах для детей, ожоговых больных, послеоперационных палатах, палатах интенсивной терапии, процедурной - 22 ?С, в палатах для взрослых, кабинетах врачей и других лечебно-вспомогательных помещениях - 20 ?С, в палатах для больных гипотиреозом - 24 ?С, в палатах для недоношенных и новорожденных - 25 ?С, в палатах для больных тиреотоксикозом - 15 ?С при относительной влажности - 30-60% и скорости движения воздуха - не более 0,15-0,25 м/с; в учебных помещениях: классах, аудиториях, кабинетах, лабораториях - 18 ?С, в спортивных залах, учебных мастерских - 15-17 ?С при относительной влажности в пределах 40-60% и скорости движения воздуха 0,1-0,2 м/с.

Микроклимат помещений оценивается по температурному режиму, т.е. перепадам температуры воздуха по горизонтали и вертикали в различных местах помещения. Для обеспечения теплового комфорта температура воздуха в помещениях должна быть относительно равномерной. Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 ?С, а по вертикали - 2,5 ?С на каждый метр высоты. Колебание температуры в помещении в течение суток не должно превышать 3 ?С.

Для интегральной оценке микроклимата используется индекс тепловой нагрузки среды (ТНС-индекс), характеризующий сочетанное действие на организм человека температуры, влажности, скорости движения воздуха и теплового излучения от окружающих поверхностей. Этот показатель рекомендуется использовать при скорости движения воздуха менее 0,6 м/с и интенсивности теплового облучения менее 1000 Вт/м 2 .

Нормирование микроклиматических условий в производственных помещениях осуществляется применительно к теплому и холод- ному периодам года с учетом категории работ и соответствующих энерготрат организма (табл. 1).

Для работников аптечных учреждений, относящихся по уровню энерготрат (до 139 Вт) к категории 1а, оптимальные величины показателей микроклимата регламентированы: в холодный период года температура на уровне 22-24 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с; в теплый период года температура составляет 23-25 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с.

Таблица 1. Оптимальные величины параметров микроклимата для производственных помещений (СанПиН 2.2.4.548-96)

Период года

(по уровню энерготрат), Вт

Температура воздуха, ?С

Температура поверхностей, ?С

Относительная влажность воздуха,%

Скорость движения воздуха, м/с

1а (< 139)

22-24

21-25

40-60

16 (140-174)

21-23

20-24

40-60

Холодный

11а (175-232)

19-21

18-22

40-60

116 (233-290)

17-19

16-20

40-60

111 (> 290)

16-18

15-19

40-60

1а (< 139)

23-25

22-26

40-60

16 (140-174)

22-24

21-25

40-60

Теплый

11а (175-232)

20-22

19-23

40-60

116 (233-290)

19-21

18-22

40-60

111 (> 290)

18-20

17-21

40-60

Лабораторная работа «Определение и гигиеническая оценка микроклимата помещения»

Задания студенту

1. Ознакомиться с устройством и принципом работы приборов для определения параметров микроклимата и его оценки.

2. Определить с помощью барометра-анероида атмосферное давление.

3. Определить температуры воздуха в 4 точках комнаты, рассчитать среднюю температуру помещения, перепады температуры по горизонтали и вертикали на 1 м высоты, оценить температурный режим.

4. Определить с помощью аспирационного психрометра и рассчитать абсолютную влажность воздуха в учебной комнате, с помощью таблицы максимальных влажностей воздуха рассчитать относительную влажность.

5. Кататермометром определить охлаждающую способность воздуха и рассчитать скорость движения воздуха в учебной комнате.

6. Исследовать электротермометром температуру кожи 2-3 студентов и сделать пробу на потоотделение. Субъективно оценить собственное теплоощущение.

7. Оценить параметры микроклимата помещения, сопоставив их с гигиеническими нормативами, и дать комплексную гигиеническую оценку микроклимата учебной комнаты, учитывая объективные и субъективные реакции организма на микроклиматические факторы.

Методика работы

1. Определение атмосферного давления производится с помощью барометра-анероида. Атмосферное давление измеряется в гектопаскалях (гПа) или мм рт.ст. 1 гПа = 1 г/см 2 = 0,75 мм рт.ст. Нормальное атмосферное давление в среднем колеблется в пределах 1013+26,5 гПа (760+ 20 мм рт.ст.).

Для непрерывной регистрации колебаний атмосферного давления используется самопишущий прибор - барограф (рис. 1). Он состоит из комплекта анероидных коробок, реагирующих на изменение давления воздуха, передающего механизма, стрелки с пером и барабана с часовым механизмом. Колебания стенок коробки передаются с помощью системы рычагов на перо самописца. Запись колебаний давления ведется на бумажной ленте, укрепленной на вращающемся барабане.

Рис. 1. Барограф

2. Определение температуры воздуха

Изолированное определение температуры воздуха может проводиться ртутными термометрами типа ТМ-6 (диапазон измерения от -30 до +50 ?С) или лабораторными спиртовыми термометрами со шкалой от 0 до +100 ?С. Для фиксации максимальной или минимальной температур применяются максимальный и минимальный термометры. Измерение температуры воздуха в производствен- ных помещениях обычно сочетают с определением его влажности и производят с помощью психрометра. При наличии источников инфракрасного излучения измерение температуры проводят по сухому термометру аспирационного психрометра, так как резервуары термометров надежно защищены от влияния теплового облучения двойными полированными и никелированными экранами.

С помощью спиртовых термометров, укрепленных на переносном штативе на высоте 1,5 м и 0,5 м от пола, в течение 7-10 мин в каждой точке измерить температуру воздуха в следующих 4 точках:

В центре помещения на высоте 0,5 м (Т1) и 1,5 м от пола (Т2);

На высоте 1,5 м на расстоянии 5- 10 см от наружной стены (оконного стекла в помещении) (Т3) и от противоположной внутренней стены (Т4);

Для изучения динамики температуры, когда возникает необходимость определения колебаний температуры в помещении, используются самопишущие приборы - термографы (суточные или недельные) типа М-16 (диапазон измерения от -20 до +50 ?С) (рис. 2).

Рис. 2. Термограф

Датчиком термографа является биметаллическая изогнутая пластинка, внутренняя поверхность которой состоит из сплава инвар, практически не расширяющегося при нагревании, а наружная - из константана, имеющего относительно большой коэффициент теплового расширения. С повышением или понижением температуры кривизна биметаллической пластинки изменяется. Колебания пластинки через систему рычагов передаются на перо с чернилами, которое регистрирует температурную кривую на ленте, закрепленной на вращающемся с определенной скоростью барабане.

3. Определение тепловой радиации проводится, если в помещении есть нагревательные приборы или нагретое оборудование. Тепловая радиация - это инфракрасное излучение с длиной волны от 760 до 15000 нм. Для измерения тепловой радиации используется актинометр. Датчик актинометра (рис. 3) представляет собой термобатарею и состоит из чередующихся черных и серебристо-белых метал- лических пластин, присоединенных к разным концам электрической

цепи. При разности температур на концах электрической цепи из-за нагревания черных пластин в результате поглощения инфракрасных лучей возникает термоэлектрический ток, который регистрируется гальванометром, отградуированным в единицах тепловой радиации, - кал/см 2. мин или Вт/м 2 . Предельно допустимый уровень тепловой радиации на рабочем месте = 20 кал/см 2. мин.

Рис. 3. Актинометр

Перед началом измерения стрелку на шкале гальванометра необходимо поставить в нулевое положение, затем открыть крышку на задней поверхности актинометра. Показания гальванометра списываются через 3 сунды после установки термоприемника (датчика) актинометра в сторону источника теплового излучения.

4. Определение влажности воздуха.

Влажность воздуха зависит от содержания в нем водяных паров. Для характеристики влажности различают следующие понятия: абсолютная, максимальная, относительная влажность, дефицит насыщения, физиологический дефицит насыщения, точка росы.

Абсолютная влажность - упругость (парциальное давление) водяных паров в воздухе в момент измерения (в г/м 3 или мм рт.ст.). Максимальная влажность - упругость водяных паров при полном насыщении влагой воздуха определенной температуры (в г/м 3 или мм рт.ст.). Относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах. Дефицит насыщения - разность между максимальной и абсолютной влаж-

ностью (в мм рт.ст.). Точка росы - температура, при которой воздух максимально насыщен водяными парами. Нормируется только относительная влажность, которая считается нормальной в диапазоне 40-60%.

Измерение влажности воздуха может проводиться с помощью различных приборов. Абсолютная влажность может быть определена с помощью психрометров. Существует 2 его вида: аспирационный психрометр Ассмана и станционный психрометр Августа (рис. 4). Психрометр состоит из двух одинаковых термометров, резервуар одного из которых обернут легкой гигроскопичной тканью, увлажняемой дистиллированной водой перед измерением, а второй остается сухим.

Рис. 4. Психрометры: а) аспирационный; б) станционный

Станционный психрометр Августа используется в стационарных условиях, исключающих воздействие на него ветра и лучистого тепла. Он состоит из двух спиртовых термометров. На основании их показаний абсолютная влажность определяется по таблицам или по формуле:

K = f - а (tс--tв) B,

где: K - абсолютная влажность воздуха при данной температуре, мм рт.ст.;

f - максимальная влажность воздуха при температуре влажного термометра, мм рт.ст. (см. табл. 2);

а - психрометрический коэффициент, равный при несильном движении воздуха 0,001;

tc и tВ - температура сухого и влажного термометров, ?С; В - атмосферное давление в момент измерения, мм рт.ст.

Наиболее широко в гигиенической практике для измерения абсолютной влажности как в помещении, так и вне его используются переносные аспирационные психрометры Ассмана, имеющие защиту от ветра и тепловой радиации. Психрометр состоит из двух ртутных термометров (имеющих шкалу от -30 до +50 ?С), которые заключены в общую оправу, а их резервуары - в двойные никелированные металлические трубки защиты от лучистого тепла. Вмонтированный в головку прибора вентилятор с часовым механизмом просасывает воздух вдоль термометров с постоянной скоростью 2 м/с.

Перед началом измерений при помощи пипетки нужно увлажнить ткань на резервуаре влажного термометра, завести ключом меха- низм прибора до отказа и подвесить его вертикально на кронштейне в исследуемой точке, обычно в центре помещения, а затем через 3- 5 мин записать показания сухого и влажного термометров.

Абсолютная влажность воздуха в этом случае вычисляется по формуле:

K = / 755.

Относительная влажность воздуха (в %) рассчитывается по формуле:

P = K . 100 / F,

где: P - относительная влажность, %,

F - максимальная влажность воздуха при температуре сухого термометра, мм рт.ст. (см. табл. 2).

Таблица 2. Максимальная влажность воздуха при разных температурах

Температура воздуха, +?С

Температура воздуха, +?С

Максимальная влажность, мм рт.ст.

10,5

30,04

11,23

31,84

11,99

33,69

12,73

35,66

13,63

37,73

14,53

39,90

15,48

42,17

16,48

44,16

17,73

46,65

18,65

49,26

19,83

52,00

21,07

55,32

22,38

58,34

23,76

61,50

25,20

64,80

26,74

68,26

28,34

71,88

Непосредственно относительная влажность может быть измерена гигрометром (рис. 5). Обезжиренный человеческий волос в гигрометре натянут вдоль рамы прибора и прикреплен к стрелке. Используется свойство волоса изменять свою длину в зависимости от влажности. При изменении степени его натяжения стрелка перемещается по шкале, отградуированной в процентах. Относительная влажность измеряется обычно в центре помещения.

Для непрерывной графической регистрации относительной влажности воздуха за определенный период времени используются самопишущие приборы - гигрографы (суточный или недельный) типа М-21 (диапазон измерений от 30 до 100% при температурах от -30 до +45 ?С), в которых датчиком служит натянутый в рамке пучок обезжиренных человеческих волос (рис. 6).

Рис. 5. Гигрометр

Рис. 6. Гигрограф

5. Определение скорости движения воздуха

Перемещение воздуха в атмосфере характеризуется направлением движения и скоростью. Направление определяется стороной

света, откуда дует ветер, а скорость - расстоянием, проходимым массой воздуха в единицу времени (м/с). Преобладающее направление ветра в конкретной местности необходимо учитывать при планировке и строительстве населенных мест, размещении на их территории жилых зданий, аптечных организаций, детских садов, школ, больниц и других учреждений, которые должны располагаться с наветренной стороны по отношению к источникам загрязнения атмосферного воздуха и других объектов окружающей среды (промышленных предприятий, ТЭЦ и др.).

Господствующее для данного места направление ветра определяется по розе ветров. Роза ветров представляет собой графическое изображение частоты (повторяемости) ветров по румбам (направ- лениям), наблюдающихся в данной местности в течение года. Для обозначения румбов используются начальные буквы наименований сторон света. Для построения розы ветров от центра графика на основных (N, S, O, W) и промежуточных (N-O, N-W, S-O, S-W) румбах откладывают отрезки в определенном масштабе, соответствующие числу дней в году с данным направлением ветра. Затем концы отрезков по румбам соединяют прямыми линиями. Штиль (отсутствие ветра) обозначают окружностью из центра графика с радиусом, соответствующим числу дней штиля.

Рис. 7. Роза ветров

На рис. 7 роза ветров указывает на господствующее северо-восточное направление ветров в исследуемой местности в течение года, поэтому жилые дома, аптеки, больницы и детские учреждения сле- дует размещать с наветренной стороны (в северо-восточном направлении), а промышленные предприятия и другие источники загрязнения - с подветренной стороны (в юго-западном направлении). Промышленные предприятия и другие источники негативного влияния на среду обитания и здоровье человека необходимо отделять от жилой застройки санитарно-защитными зонами (СЗЗ). Ширина санитарно-защитной зоны устанавливается в соответствии с санитарной классификацией промышленных предприятий, сооружений и иных объектов в зависимости от степени вредности производства, его мощности, характера и количества выделяемых в окружающую среду загрязняющих веществ, создаваемого шума, вибрации и других вредных физических факторов (Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН2.2.1/2.1.1.1200-03). По этим признакам промышленные предприятия разделены на 5 классов, для каждого установлен размер СЗЗ: для предприятий 1-го класса - 1000 м с не менее 40% озеленения, для 2-го - 500 м, 3-го - 300 м с не менее 50% озеленения, для 4-го - 100 м и 5-го - 50 м с не менее 60% озеленения.

Рис. 8. Анемометры (слева - чашечный, справа - крыльчатый)

Измерение сравнительно больших скоростей движения воздуха производится анемометрами различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха. Чашечный анемометр МС-13 измеряет скорости от 1 до 30 м/с. Его чаще всего используют в метеорологической практике. Крыльчатый анемометр АСО-3 используется в производственных помещениях для измерения скоростей движения воздуха в диапазоне 0,3-5,0 м/с (рис. 8).

Принцип работы приборов основан на передаче вращения лопастей, укрепленных на оси, счетному механизму, фиксирующему число оборотов. Для определения скорости воздушной среды разность между показаниями анемометра после его нахождения в струе воздуха в течение 3 мин и первоначальными показаниями прибора делят на число сунд измерения. Число оборотов в сунду соответствует скорости движения воздуха в м/с.

Для измерения малых скоростей воздуха в помещении используются стеклянные шаровые или цилиндрические кататермометры, которые позволяют измерить скорость в диапазоне 0,05-2,0 м/с (рис. 9).

Рис. 9. Кататермометр шаровой

Шкала шарового кататермометра состоит из 7? (от 33 до 40?), шкала цилиндрического - из 3? (от 35 до 38?). Определение основано на оценке интенсивности охлаждения нагретого прибора за счет охлаждающей способности воздуха. Охлаждающую способность воздуха «Н» определяют по фактору кататермометра (F) и времени охлаждения его резервуара (t) в сундах с 38? до 35 ?С или с 40? до 33?С шкалы прибора. Величина F указана в верхней части кататермометра, она соответствует количеству тепла в милликалориях, теряемого с 1 см 2 поверхности прибора при его охлаждении с 40? до 33 ?С или от 38? до 35 ?С. Прибор нагревают в стакане с горячей водой с температурой 66-75 ?С для того, чтобы спирт поднялся немного выше верхней отметки шкалы прибора, вытирают прибор насухо и, подвесив его в центре помещения, отмечают время, требующееся для охлаждения спирта с 40? до 33 ?С или с 38? до 35 ?С. Охлаждающую способность воздуха «Н» находят по формуле:

H = [(F/3) (40-33)] / t, мкал /см 2 .

Для учета охлаждающего действия окружающего воздуха необходимо вычислить фактор Q, равный разности между средней температурой кататермометра (36,5 ?С) и температурой воздуха в помещении. Рассчитав H/Q, скорость движения воздуха в точке измерения находят по табл. 3.

Скорость движения воздуха может быть рассчитана и по эмпирической формуле: V = [(H/Q - 0,20)/0,40] 2 м/с. Летом благоприятны скорости движения атмосферного воздуха в пределах 1-4 м/с, а в помещении - 0,2-0,4 м/с.

Для измерения и контроля параметров воздушной среды в настоящее время используются специальные приборы метеометры типа МЭС-200, предназначенные для измерения атмосферного давления, относительной влажности воздуха, его температуры и скорости воздушного потока внутри помещения. В качестве датчиков для измерения параметров в приборе используются терморезисторы и сенсор влажности с блоком усилителя.

6. Исследование реакций организма на микроклимат

* Теплоощущение человека зависит от комплексного действия микроклиматических факторов, а также от интенсивности выполняемой работы, степени утомления, характера питания, одежды, эмоционального состояния, тренированности человека к холоду

Таблица 3. Скорость движения воздуха меньше 1 м/сек при различных диапазонах температуры воздуха в помещении

и других факторов. Оценку теплового самочувствия человек дает как «холодно», «прохладно», «нормально» (или «комфортно»), «тепло», «жарко». Более показательны объективные методы исследования теплового состояния организма.

Определение температуры кожи производится электротермометром в симметричных точках (3- 4 см от средней линии) на лбу, на груди, по середине плеча, на тыльной стороне кисти (между основаниями большого и указательного пальцев). Температура кожи лба и груди при нормальном теплоощущении человека = 31 ?- 34?, температура рук - не ниже 27?.

"Исследование потоотделения производится в условиях жаркого микроклимата или интенсивной физической работы и является

одним из показателей напряжения процессов терморегуляции. Йодокрахмальный метод Минора основан на цветной реакции крахмала с йодом при смачивании кожи потом. К участку кожи лба, припудренному крахмалом, прикладывают листочек фильтровальной бумаги, обработанный высохшей смесью 10% настойки йода, этилового спирта и касторового масла. При выделении пота бумажка окрашивается в темно-синий цвет. При комфортном микроклимате на ней могут быть лишь отдельные мелкие точки; крупные пятна свидетельствуют об усиленном потоотделении.

Санитарно-гигиеническое заключение основывается на сопоставлении результатов измерения микроклиматических параметров с их гигиеническими нормативами, а также с субъективными и объективными показателями терморегуляции присутствующих в помещении людей. Микроклимат может быть оценен как оптимальный (комфортный); допустимо прохладный или теплый; недопустимо холодный или жаркий.

Образец протокола для выполнения лабораторного задания «Определение и гигиеническая оценка микроклимата помещения»

H/Q

17,5?

20,0?

22,5?

25,0?

0,27

0,035

0,041

0,047

0,051

0,28

0,049

0,051

0,061

0,070

0,29

0,060

0,067

0,076

0,085

0,30

0,073

0,082

0,091

0,101

0,31

0,088

0,098

0,107

0,116

0,32

0,104

0,113

0,124

0,136

0,33

0,119

0,128

0,140

0,153

0,34

0,139

0,148

0,160

0,174

0,35

0,154

0,167

0,180

0,196

0,36

0,179

0,192

0,206

0,220

0,37

0,198

0,212

По вертикали, м

По горизонтали,?С

У наружной стены

В центре

У внутренней стены

Перепад

1,5 м от пола

Т з

Т 2

Т 4

Т 3 -Т 4

0,5 м от пола

Перепад,?С

Т 2 -Т 1

Расчет средней температуры воздуха в помещении:

Т ?ср =(Т1 + Т 2 + Т з + Т4) / 4 ... 3. Определение влажности воздуха:

Определение абсолютной влажности с помощью аспирационного психрометра Ассмана:

Показания сухого термометра. Показания влажного термометра. Расчет абсолютной влажности по формуле: Расчет относительной влажности по формуле: 4. Определение скорости движения воздуха в помещении с помощью шарового кататермометра: Время охлаждения прибора (t) ... Фактор прибора (F) ...

Охлаждающая способность воздуха: H = [(F/3) (40-33)] / t ...

Q (36,5? - Т ?ср) =..., H / Q = ..., V = ... Заключение (образец)

Микроклимат данного помещения обеспечивает комфортные условия (или недопустимо жаркий и вызывает значительное напряжение терморегуляции; несколько выше зоны комфорта - допустимо теплый и вызывает некоторое напряжение терморегуляции; ниже зоны комфорта - недопустимо холодный и вызывает ощущение холода и пр.). Для оздоровления микроклимата рекомендуется...

На микроклимат производственных помещений большое влияние оказывает технологический процесс. Практически производственные помещения делят на холодные, имеющие нормальную температуру, и горячие. При пониженной температуре проводится работа в холодильниках, элеваторах, складских помещениях. К горячим помещениям относятся мартеновские, прокатные, литейные цехи и др.

Технологический процесс может оказывать влияние и на влажность воздуха производственных помещений. Источниками повышения влажности воздуха являются красильные и промывочные аппараты, гальванические ванны. Они могут повышать влажность воздуха до
80-90%.

Реже в производственных цехах приходится встречаться с пониженной влажностью (20-25%). Такой воздух вызывает неприятное чувство сухости слизистых оболочек верхних дыхательных путей.

Нагретые поверхности в горячих цехах могут явиться причиной возникновения воздушных потоков, направленных кверху, и притекания на их место более холодного воздуха. Такое движение воздуха может создавать сквозняки. В горячих цехах возможно также действие теплового излучения (инфракрасного).

Неблагоприятное действие производственного микроклимата прежде всего проявляется в нарушении процессов терморегуляции, функции различных органов и систем.

Несмотря на значительные колебания температуры, влажности и движения воздуха в производственных условиях, организм справляется с ними благодаря приспособляемости терморегуляционного аппарата.

Однако при длительном воздействии особо неблагоприятного микроклимата терморегуляторные способности организма оказываются недостаточными, нарушается тепловой баланс, возникают глубокие сдвиги в состоянии организма.

Высокая температура воздуха в сочетании с тепловым излучением и физической нагрузкой оказывает влияние и на сердечно-сосудистую систему, водно-солевой обмен, дыхание. Наблюдается падение артериального давления, сгущение крови. Вместе с потом организм теряет значительное количество соли.

К мероприятиям по борьбе с перегреванием организма относятся: механизация тяжелых работ, защита от источников излучения, вентиляция, личная профилактика. Механизация трудоемких работ, облегчая труд, уменьшает образование тепла в организме.

Для удаления нагретого воздуха применяют организованную аэрацию; для предупреждения перегревания организма устраивают воздушный душ - поток воздуха, направляемый непосредственно на рабочего (рис. 29). Уменьшение теплоизлучения достигается экранированием теплоизлучающих поверхностей различными теплоизоляционными материалами (асбестом, пеностеклом), применением водяных завес (рис. 30).

Рис. 29. Схема отдувающей вентиляции (воздушный душ) в литейном цехе.

Рис. 30. Водная завеса перед отверстием печи для защиты от облучения.

Для регуляции водно-солевого обмена применяют для питья подсоленную (0,5%) газированную воду.

К мерам личной профилактики относятся также кратковременные перерывы в работе, проводимые в кабинах с водяным охлаждением (рис. 31), применение рациональной спецодежды и обуви.


Рис. 31. Кабина с водяным охлаждением.

Для предупреждения переохлаждения организма используют устройство местного лучистого отопления на постоянных местах работы, специальные помещения для обогрева; работающих снабжают спецодеждой, обувью, рукавицами из малотеплопроводных материалов.

Гигиена труда - >го отрасль медицинских знаний, изучающая взаимодей-ствие работающего персонала с производственной средой и разрабатывающая нормы и практические мероприятия по улучшению условий труда.

Цель гигиены труда - не лечение больного, а предупреждение заболева-ний, основным объектом внимания здесь является здоровый человек.

Предметом изучения гигиены труда является производственная среда и от-дельные ее компоненты (технологическое оборудование, животные, корма), их влияние на здоровье и самочувствие работающего персонала. При этом важ-нейшими параметрами среды являются:

физико-метеорологические условия труда - температура, влажность, скорость движения воздуха;

санитарно-гигиенические условия - концентрация вредных веществ в воздухе, запыленность, шум и вибрация, освещенность рабочих мест;

наличие и эффективность работы санитарно-технических устройств (вентиляции, отопления, канализации) и средств коллективной защиты.

Задачей гигиены труда является разработка санитарно-профилактических мероприятий, направленных на создание благоприятных условий труда и обес-печение высокого уровня состояния здоровья и трудоспособности работающе-го персонала.

Производственная санитария- это одно из направлений гигиены труда, ко-торое связано с разработкой мероприятий и средств, предотвращающих воз-действие на работающих вредных производственных факторов.

Микроклимат в производственных помещениях и его влияние на работоспособность человека.

Человеку для нормальной жизнедеятельности необходимы нормальные внешние условия. "Гак, для человека необходимым является объем производст-венного здания 15 м 3 , площадь - не менее 4.5 м 2 , содержание 0 2 в воздухе не менее 20,95 %, СО; не более 0,03 %, температура воздуха - от +8 до 21 °С.

Большое влияние на работоспособность рабочего персонала оказывает ми-кроклимат производственных помещений - совокупность физических свойств и химического состава воздушной среды, наличие микроорганизмов и взвешен-ных частиц.

Микроклимат в производственных помещениях оценивается следующими параметрами:

температурой воздуха, °С,

относительной влажностью воздуха, %,

скоростью движения воздуха, V м/с,

барометрическим давлением, Р ГПа (мм. рт. ст.).

Различают 4 уровня комфортности производственной среды для работаю-щего человека:

комфортный, при котором обеспечивается оптимальная работоспо-собность, хорошее самочувствие и сохранение здоровья;

относительно дискомфортный, при котором обеспечивается задан-ная работоспособность и сохраняется здоровье, но возникают функциональные изменения не выходящие за пределы нормы;

экстремальный, когда снижается работоспособность и возникают функциональные изменения, но без патологии;

сверхэкстремальный, приводящий к возникновению в организме человека патологических и соматических изменений.

Влияние физических параметров воздуха на микроклимат.

Основное влияние на комфортность микроклимата оказывают физические параметры воздуха. Температура воздуха определяет тепловой комфорт. В ус-ловиях теплового комфорта у человека не возникает беспокоящих его тепло-вых ощущений. Избыточная теплота отрицательно влияет на сердечно-сосуди-стую систему, дыхание, водный и солевой баланс. При понижении температуры (до - 15 °С) организм может быстро переохладиться, возможны обморожения. Система терморегуляции человека обеспечивает поддержание температуры те-ла в ограниченном диапазоне изменения наружной температуры, за пределами которых необходимо проведение искусственных мероприятий, обеспечиваю-щих нормальное функционирование организма.

Большое гигиеническое значение имеет влажность воздуха, оцениваемая разными гигрометрическими показателями.

Абсолютная влажность - масса водяного пара в 1 м 3 воздуха (г/м 3), она не дает представления о степени насыщения.

Относительная влажность - отношение абсолютной влажности к макси-мальной в том же объеме и при той же температуре, выраженное в %.

Дефицит насыщения - разность между максимальной и абсолютной влаж-ностью.

Точка росы - температура, при которой отмечается насыщение воздуха во-дяным паром.

Для определения относительной влажности воздуха используют психро-метры и волосяные гигрометры и гигрографы.

Оптимальной для работающих является влажность воздуха в пределах 40 -70 %. При повышенной влажности увеличивается теплопроводность воздуха, это усиливает теплопотери при низкой температуре и затрудняет кожное дыха-ние и теплоотдачу при повышенных температурах. Низкая влажность также неблагоприятна, особенно при повышенных температурах вследствие усиленного испарения влаги с кожных покровов, появлению сухости слизистых обо-лочек и снижению иммунитета организма.

Движение воздуха также оказывает влияние на самочувствие человека. В жарком помещении движение воздуха способствует увеличению теплоотдачи и улучшает состояние организма, при низкой температуре это может усиливать охлаждение организма работающих. Скорость движения воздуха в производст-венных помещениях в летнее время не должна превышать 0,3 м/с, в холодное время года - 0,1 м/с.

Изменения атмосферного давления могут вызывать болезненные реакции в организме работающих, особенно опасными могут быть значительные перепа-ды атмосферного давления в течение короткого времени.

Микроклимат и его гигиеническое значение. Виды микроклимата и влияние дискомфортного микроклимата на теплообмен и здоровье человека

Микроклимат – комплекс физических свойств воздуха в определœенный момент времени и в конкретном помещении или на другой строго ограниченной территории. На формирование микроклимата влияют: технологический процесс, климат местности, сезон года и условия отопления и вентиляции. Показателями, характеризующими микроклимат в помещениях, являются: температура воздуха, температура поверхностей ограждающих конструкций, относительная влажность воздуха, скорость движения воздуха.

Следует отметить, что при небольших отклонениях физических факторов воздушной среды от зоны комфорта самочувствие здоровых людей может не измениться, тогда как у больных людей часто возникают, так называемые, метеотропные реакции. Особенно чувствительны к изменению метеорологических факторов внешней среды люди, страдающие сердечно-сосудистыми, нервно-психическими и простудными заболеваниями.

При гигиенической оценке влияния физических факторов воздушной среды на организм человека крайне важно учитывать весь комплекс их: атмосферное давление, температуру воздуха, влажность и скорость движения. Важно заметить, что для создания комфортных условий самочувствия людей рекомендуются следующие параметры факторов в помещениях (микроклимат помещений):

1) средняя температура воздуха 18-200 (для детей 20-220), в палатах для недоношенных детей - 250, в перевязочных и процедурных кабинœетах - 220, операционных - 210, родовых - 250. Перепады температуры воздуха в горизонтальном направлении от наружной стены до внутренней не должны превышать 20, в вертикальном - 2,50 на каждый метр высоты. В течение суток колебания температуры воздуха в помещении при центральном отоплении не должны превышать 30;

2) величина относительной влажности воздуха при указанных температурах может колебаться в пределах 40-60 % (зимой - 30- 50%);

3) скорость движения воздуха в помещениях должна быть 0,2 - 0,4 м/с, на выходе из приточных отверстий вентиляционных каналов больничных палат - не более 1 м/с, а в ванных, душевых, физиотерапевтических кабинœетах - 0,7 м/с. Особенно важно соблюдение этих условий в больницах.

Все жизненные процессы в организме сопровождаются непрерывным выделœением теплоты в окружающую среду. Стоит сказать, что для нормального протекания физиологических процессов крайне важно, чтобы выделяемая организмом теплота полностью отводилась в окружающую среду. Нарушение теплового баланса может привести к перегреву или переохлаждению.

Различают монотонный микроклимат, когда его параметры мало изменяются в течение рабочей смены (ткацкие, швейные цеха, обувное производство, машиностроение и т.п.), и динамичный - быстрое и значительное изменение параметров микроклимата (сталеплавильные, литейные цеха и т.п.).



Понравилась статья? Поделитесь ей
Наверх