Плотность оксида серы 4 при нормальных условиях. Оксид серы (IV) и сернистая кислота

Сера распространена в земной коре, среди других элементов занимает шестнадцатое место. Она встречается как в свободном состоянии, так и в связанном виде. Неметаллические свойства характерны для этого химического элемента. Ее латинское название «Sulfur», обозначается символом S. Элемент входит в состав различных ионов соединений, содержащих кислород и/или водород, образует много веществ, относящихся к классам кислот, солей и несколько окислов, каждый из которых может быть назван оксид серы с добавлением символов, обозначающих валентность. Степени окисления, которые она проявляет в различных соединениях +6, +4, +2, 0, −1, −2. Известны окислы серы с различной степенью окисления. Самые распространенные — это диоксид и триоксид серы. Менее известными являются монооксид серы, а также высшие (кроме SO3) и низшие окислы этого элемента.

Монооксид серы

Неорганическое соединение, называемое оксид серы II, SO, по внешнему виду это вещество является бесцветным газом. При контакте с водой он не растворяется, а реагирует с ней. Это очень редкое соединение, которое встречается только в разреженной газовой среде. Молекула SO термодинамически неустойчива, превращается изначально в S2O2, (называют disulfur газ или пероксид серы). Из-за редкого появления монооксида серы в нашей атмосфере и низкой стабильности молекулы трудно в полной мере определить опасности этого вещества. Но в сконденсированном или более концентрированном виде окисел превращается в пероксид, который является относительно токсичным и едким. Это соединение также легко воспламеняется (напоминает этим свойством метан), при сжигании получается диоксид серы — ядовитый газ. Оксид серы 2 был обнаружен около Ио (одного из в атмосфере Венеры и в межзвездной среде. Предполагается, что на Ио он получается в результате вулканических и фотохимических процессов. Основные фотохимические реакции выглядят следующим образом: O + S2 → S + SO и SO2 → SO + O.

Сернистый газ

Оксид серы IV, или двуокись серы (SO2) является бесцветным газом с удушливым резким запахом. При температуре минус 10 С он переходит в жидкое состояние, а при температуре минус 73 С затвердевает. При 20С в 1 литре воды растворяется около 40 объемов SO2.

Этот оксид серы, растворяясь в воде, образует сернистую кислоту, так как является ее ангидридом: SO2 + H2O ↔ H2SO3.

Он взаимодействует с основаниями и 2NaOH + SO2 → Na2SO3 + H2O и SO2 + CaO → CaSO3.

Для сернистого газа характерны свойства и окислителя, и восстановителя. Он окисляется кислородом воздуха до серного ангидрида в присутствии катализатора: SO2 + O2 → 2SO3. С сильными восстановителями, такими как сероводород, играет роль окислителя: H2S + SO2 → S + H2O.

Сернистый газ в промышленности используют в основном для получения серной кислоты. Диоксид серы получают сжиганием серы или железного колчедана: 11O2 + 4FeS2 → 2Fe2O3 + 8SO2.

Серный ангидрид

Оксид серы VI, или трехокись серы (SO3) является промежуточным продуктом и самостоятельного значения не имеет. По внешнему виду это бесцветная жидкость. Она кипит при температуре 45 С, а ниже 17 С превращается в белую кристаллическую массу. Этот серы (со степенью окисления атома серы + 6) отличается крайней гигроскопичностью. С водой он образует кислоту серную: SO3 + H2O ↔ H2SO4. Растворяясь в воде, выделяет большое количество тепла и, если прибавлять не постепенно, а сразу большое количество оксида, то может произойти взрыв. Триоксид серы хорошо растворяется в концентрированной кислоте серной с образованием олеума. Содержание SO3 в олеуме достигает 60 %. Для этого соединения серы характерны все свойства

Высшие и низшие оксиды серы

Серы представляют собой группу химических соединений с формулой SO3 + х, где х может быть 0 или 1. Мономерный окисел SO4 содержат пероксогруппу (O-O) и характеризуется, как и окисел SO3, степенью окисления серы +6. Этот оксид серы может быть получен при низких температурах (ниже 78 К) в результате реакции SO3 и или фотолизе SO3 в смеси с озоном.

Низшие оксиды серы представляют собой группу химических соединений, в которую входят:

  • SO (оксид серы и его димер S2O2);
  • монооксиды серы SnO (представляют собой циклические соединения, состоящие из колец, образованных атомами серы, при этом n может быть от 5 до 10);
  • S7O2;
  • полимерные оксиды серы.

Интерес к низшим оксидам серы увеличился. Это связано с необходимостью изучения их содержания в наземной и внеземной атмосферах.

В этой статье вы найдете информацию о том, что такое оксид серы. Будут рассмотрены его основные свойства химического и физического характера, существующие формы, способы их получения и отличия между собой. А также будут упомянуты области применения и биологическая роль данного оксида в его разнообразных формах.

Что представляет собой вещество

Оксид серы - это соединение простых веществ, серы и кислорода. Существует три формы оксидов серы, отличающиеся между собой степенью проявленной валентности S, а именно: SO (монооксид, моноокись серы), SO 2 (серный диоксид или сернистый газ) и SO 3 (триоксид или ангидрид серы). Все перечисленные вариации оксидов серы имеют схожие как химические, так и физические характеристики.

Общие данные о моноокисиде серы

Двухвалентный серный монооксид, или иначе серная моноокись - это неорганическое вещество, состоящее из двух простых элементов - серы и кислорода. Формула - SO. В условиях нормальной обстановки является газом без цвета, но с резким и специфическим запахом. Вступает в реакции с водным раствором. Довольно редкое соединение в земной атмосфере. К воздействию температур неустойчив, существует в димерной форме - S 2 O 2 . Иногда способен, взаимодействуя с кислородом, в результате реакции образовывать диоксид серы. Солей не образует.

Получают оксид серы (2) обычно при помощи сжигания серы или разложении ее ангидрида:

  • 2S2+O 2 = 2SO;
  • 2SO2 = 2SO+O2.

В воде вещество растворяется. В результате оксид серы образует тиосерную кислоту:

  • S 2 O 2 +H 2 O = H 2 S 2 O 3 .

Общие данные о сернистом газе

Оксид серы - очередная форма оксидов серы с химической формулой SO 2 . Имеет неприятный специфический запах и не имеет цвета. Подвергаясь давлению, может зажигаться при комнатной температуре. При растворении в воде образует нестойкую сернистую кислоту. Может растворяться в растворах этанола и серной кислоты. Является компонентом вулканического газа.

В промышленности получают сжиганием серы или обжигом ее сульфидов:

  • 2FeS 2 +5O 2 = 2FeO+4SO 2 .

В лабораториях, как правило, SO 2 получают при помощи сульфитов и гидросульфитов, подвергая их воздействию сильной кислоты, а также воздействию на металлы с маленькой степенью активности концентрированной H 2 SO 4 .

Как и другие серные оксиды, SO 2 является кислотным оксидом. Взаимодействуя со щелочами, образуя различные сульфиты, вступает в реакции с водой, создавая серную кислоту.

SO 2 чрезвычайно активен, и это ярко выражается в его восстановительных свойствах, где окислительная степень оксида серы возрастает. Может проявлять свойства окислителя, если на него воздействует сильный восстановитель. Последнюю характерную особенность используют для производства фосфорноватистой кислоты, или для отделения S от газов металлургической области деятельности.

Оксид серы (4) широко используется человеком для получения сернистой кислоты или ее солей - это его основная область применения. А также он участвует в процессах виноделия и выступает там в роли консерванта (E220), иногда им протравливают овощехранилища и склады, так как он уничтожает микроорганизмы. Материалы, которые нельзя подвергать отбеливанию хлором, обрабатывают оксидом серы.

SO 2 - довольно токсичное соединение. Характерные симптомы, указывающие на отравление им, - это откашливание, появление проблем с дыханием, как правило, в виде насморка, охриплости, появление необычного привкуса и першение в горле. Вдыхание такого газа может вызвать удушье, нарушение речевой способности индивида, рвоту, затруднение процесса глотания, а также легочный отек в острой форме. Максимально допустимой концентрацией этого вещества в рабочем помещении является 10мг/м 3 . Однако у различных людей организм может проявлять и разную чувствительность к сернистому газу.

Общие данные о серном ангидриде

Серный газ, или, как его называют, серный ангидрид, - это высший оксид серы с химической формулой SO 3 . Жидкость с удушливым запахом, легколетучая при стандартных условиях. Способна застывать, образовывая смеси кристаллического типа из его твердых модификаций, при температуре от 16.9 °C и ниже.

Детальный разбор высшего оксида

При окислении SO 2 воздухом под воздействием высоких температур, необходимым условием является наличие катализатора, например V 2 O 5 , Fe 2 O 3 , NaVO 3 или Pt.

Термическое разложение сульфатов либо взаимодействие озона и SO 2:

  • Fe 2 (SO 4)3 = Fe 2 O 3 +3SO 3 ;
  • SO 2 +O 3 = SO 3 +O 2 .

Окисление SO 2 при помощи NO 2:

  • SO 2 +NO 2 = SO 3 +NO.

К физическим качественным характеристикам относятся: наличие в состоянии газа плоского строения, тригонального типа и D 3 h симметрии, во время перехода от газа к кристаллу или жидкости образует тример циклического характера и зигзагообразную цепь, имеет ковалентную полярную связь.

В твердой форме SO 3 встречается в альфа, бета, гамма и сигма формах, при этом он имеет, соответственно, разную температуру плавления, степень проявления полимеризации и разнообразную кристаллическую форму. Существование такого количества видов SO 3 обусловлено образованием связей донорно-акцепторного типа.

К свойствам ангидрида серы можно отнести множество его качеств, основными из них являются:

Способность взаимодействовать с основаниями и оксидами:

  • 2KHO+SO 3 = K 2 SO 4 +H 2 O;
  • CaO+SO 3 = CaSO 4 .

Высший серный оксид SO 3 имеет достаточно большую активность и создает серную кислоту, взаимодействуя с водой:

  • SO 3 +H 2 O = H2SO 4.

Вступает в реакции взаимодействия с хлороводородом и образует хлоросульфатную кислоту:

  • SO 3 +HCl = HSO 3 Cl.

Для оксида серы характерным является проявление сильных окислительных свойств.

Применение серный ангидрид находит в создании серной кислоты. Небольшое его количество выделяется в окружающую среду во время использования серных шашек. SO 3 , образуя серную кислоту после взаимодействия с влажной поверхностью, уничтожает разнообразные опасные организмы, например грибки.

Подводя итоги

Оксид серы может находиться в разных агрегатных состояниях, начиная с жидкости и заканчивая твердой формой. В природе встречается редко, а способов его получения в промышленности довольно много, как и сфер, где его можно использовать. Сам оксид имеет три формы, в которых он проявляет различную степень валентности. Может быть очень токсичным и вызывать серьезные проблемы со здоровьем.

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Диоксид серы - бесцветный газ с резким запахом. Молекула имеет угловую форму.

  • Температура плавления - -75,46 °С,
  • Температура кипения - -10,6 °С,
  • Плотность газа - 2,92655 г/л.

Легко сжижается в бесцветную легкоподвижную жидкость при температуре 25 °С и давлении около 0,5 МПа.

Для жидкой формы плотность равна 1,4619 г/см 3 (при - 10 °С).

Твердый диоксид серы - бесцветные кристаллы, ромбической сингонии.

Диоксид серы заметно диссоциирует только около 2800 °С.

Диссоциация жидкого диоксида серы проходит по схеме:

2SO 2 ↔ SO 2+ + SO 3 2-

Трехмерная модель молекулы

Растворимость диоксида серы в воде зависит от температуры:

  • при 0 °С в 100 г воды растворяется 22,8 г диоксида серы,
  • при 20 °С - 11,5 г,
  • при 90 °С - 2,1 г.

Водный раствор диоксида серы - это сернистая кислота H 2 SO 3.

Диоксид серы растворим в этаноле, H 2 SO 4 , олеуме, CH 3 COOH. Жидкий сернистый ангидрид смешивается в любых соотношениях с SO 3. CHCl 3 , CS 2 , диэтиловым эфиром.

Жидкий сернистый ангидрид растворяет хлориды. Иодиды и роданиды металлов не растворяются.

Соли, растворенные в жидком диоксиде серы, диссоциируют.

Диоксид серы способен восстанавливаться до серы и окисляться до шестивалентных соединений серы.

Диоксид серы токсичен. При концентрации 0,03-0,05 мг/л раздражает слизистые оболочки, органы дыхания, глаза.

Основной промышленный способ получения диоксида серы - из серного колчедана FeS 2 путем его сжигания и дальнейшей обработки слабой холодной H 2 SO 4.

Кроме того, серный диоксид можно получить путем сжигания серы, а также как побочный продукт обжига медных и цинковых сульфидных руд.

Сульфидная сера доступна растениям только после перехода в сульфатную форму. Большая часть серы присутствует в почве в составе органических соединений, не усваиваемых растениями. Только после минерализации органических веществ и перехода серы в сульфатную форму органическая сера становится доступной для растений.

Химическая промышленность не выпускает удобрений с основным действующим веществом диоксидом серы. Однако в качестве примесей он содержится во многих удобрениях. К ним относятся фосфогипс, простой суперфосфат, сульфат аммония, сульфат калия, калимагнезия, гипс, сланцевая зола, навоз, торф и многие другие.

Поглощение диоксида серы растениями

Сера поступает в растения через корни в виде SO 4 2- и листья в виде диоксида серы. При этом поглощение серы из атмосферы обеспечивает до 80 % потребности растений в данном элементе. В связи с этим вблизи промышленных центров, где атмосфера богата диоксидом серы, растения хорошо обеспечены серой. В удаленных районах количество сернистого ангидрида в осадках и атмосфере сильно снижается и питание растений серой зависит от ее наличия в почве.

Оксид серы (IV) проявляет свойства

1) только основного оксида

2) амфотерного оксида

3) кислотного оксида

4) несолеобразующего оксида

Ответ: 3

Пояснение:

Оксид серы (IV) SO 2 является кислотным оксидом (оксидом неметалла), в котором сера имеет заряд +4. Этот оксид образует соли сернистой кислоты при H 2 SO 3 и при взаимодействии с водой образует саму сернистую кислоту H 2 SO 3 .

К несолеобразующим оксидам (оксидам, не проявляющих ни кислотных, ни основных, ни амфотерных свойств и не образующим соли) относятся NO, SiO, N 2 O (закись азота), CO.

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кислотным и основным оксидом являются соответственно

2) CO 2 и Al 2 O 3

Ответ: 1

Пояснение:

Кислотные оксиды – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Из представленного списка к ним относятся: SO 2 , SO 3 и CO 2 . При взаимодействии с водой они образуют следующие кислоты:

SO 2 + H 2 O = H 2 SO 3 (сернистая кислота)

SO 3 + H 2 O = H 2 SO 4 (серная кислота)

CO 2 + H 2 O = H 2 CO 3 (угольная кислота)

Основные оксиды – это оксида металлов в степенях окисления +1, +2. К ним относятся оксиды металлов главной подгруппы первой группы (щелочные металлы) Li-Fr, оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg-Ra и оксиды переходных металлов в низших степенях окисления. Из представленного списка к основным оксидам относятся: MgO, FeO.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Из представленного списка к амфотерным оксидам относятся: Al 2 O 3 , ZnO.

Оксид серы (VI) взаимодействует с каждым из двух веществ:

1) вода и соляная кислота

2) кислород и оксид магния

3) оксид кальция и гидроксид натрия

Ответ: 3

Пояснение:

Оксид серы (VI) SO 3 (степень окисления серы +6) является кислотным оксидом, реагирует с водой с образованием соответствующей серной кислоты H 2 SO 4 (степень окисления серы также +6):

SO 3 + H 2 O = H 2 SO 4

Как кислотный оксид SO 3 не взаимодействует с кислотами, т. е. с HCl реакция не идет.

Сера в SO 3 проявляет высшую степень окисления +6 (равную номеру группы элемента), поэтому SO 3 с кислородом не реагирует (кислород не окисляет серу в степени окисления +6).

С основным оксидом MgO образуется соответствующая соль – сульфат магния MgSO 4:

MgO + SO 3 = MgSO 4

Поскольку оксид SO 3 является кислотным, он взаимодействует с основными оксидами и основаниями с образованием соответствующих солей:

MgO + SO 3 = MgSO 4

NaOH + SO 3 = NaHSO 4 или 2NaOH +SO 3 = Na 2 SO 4 + H 2 O

Как было отмечено выше, с водой SO 3 реагирует с образованием серной кислоты.

С переходным металлом CuSO 3 не взаимодействует.

Оксид углерода (IV) реагирует с каждым из двух веществ:

1) водой и оксидом кальция

2) кислородом и оксидом серы (IV)

3) сульфатом калия и гидроксидом натрия

4) фосфорной кислотой и водородом

Ответ: 1

Пояснение:

Оксид углерода (IV) CO 2 является кислотным оксидом, поэтому взаимодействует с водой с образованием неустойчивой угольной кислоты H 2 CO 3 и с оксидом кальция с образованием карбоната кальция CaCO 3:

CO 2 + H 2 O = H 2 CO 3

CO 2 + CaO = CaCO 3

С кислородом углекислый газ CO 2 не реагирует, поскольку кислород не может окислить элемент, находящийся в высшей степени окисления (для углерода это +4 по номеру группы, в которой он находится).

С оксидом серы (IV) SO 2 реакция не идет, поскольку, являясь кислотным оксидом, CO 2 не взаимодействует с оксидом, обладающим также кислотными свойствами.

Углекислый газ CO 2 не взаимодействует с солями (например, с сульфатом калия K 2 SO 4), но взаимодействует с щелочами, поскольку он обладает основными свойствами. Реакция протекает с образованием кислой или средней соли в зависимости от избытка или недостатка реагентов:

NaOH + CO 2 = NaHCO 3 или 2NaOH + CO 2 = Na 2 CO 3 + H 2 O

CO2, являясь кислотным оксидом, не реагирует ни с кислотными оксидами, ни с кислотами, поэтому реакция между углекислым газом и фосфорной кислотой H 3 PO 4 не происходит.

CO 2 восстанавливается водородом до метана и воды:

CO 2 + 4H 2 = CH 4 + 2H 2 O

Основные свойства проявляет высший оксид элемента

Ответ: 3

Пояснение:

Основные свойства проявляют основные оксиды — оксиды металлов в степенях окисления +1 и +2. К ним относятся:

Из представленных вариантов к основным оксидам относится только оксид бария BaO. Все остальные оксиды серы, азота и углерода относятся либо к кислотным, либо к несолеобразующим: CO, NO, N 2 O.

Оксиды металлов со степенью окисления + 6 и выше являются

1) несолеобразующими

2) основными

3) амфотерными

Ответ: 4

Пояснение:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид металла в степени окисления +6 обладает кислотными свойствами.

Кислотные свойства проявляет оксид, формула которого

Ответ: 1

Пояснение:

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, оксид кремния SiO 2 с зарядом кремния +6 обладает кислотными свойствами.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO. CO – несолеобразующий оксид.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

BaO принадлежит к основным оксидам.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. Амфотерным оксидом является и оксид алюминия Al 2 O 3 .

Степень окисления хрома в его амфотерных соединениях равна

Ответ: 3

Пояснение:

Хром – элемент побочной подгруппы 6-й группы 4-го периода. Для него характерны степени окисления 0, +2, +3, +4, +6. Степени окисления +2 соответствуют оксид CrO, обладающий основными свойствами. Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 . Это — наиболее устойчивая степень окисления хрома. Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, простейшие из которых хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 .

К амфотерным оксидам относится

Ответ: 3

Пояснение:

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO. ZnO – амфотерный оксид.

Несолеобразующими оксидами являются N 2 O, NO, SiO, CO.

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr (к этой группе относится оксид калия K 2 O);

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, SO 3 – кислотный оксид, соответствующий серной кислоте H 2 SO 4 .

7FDBA3 Какие из приведенных утверждений верны?

А. Основные оксиды – это оксиды, которым соответствуют основания.

Б. Основные оксиды образуют только металлы.

1) верно только А

2) верно только Б

3) верны оба утверждения

4) оба утверждения неверны

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Основным оксидам в качестве гидроксида соответствуют основания.

Оба утверждения верны.

C водой при обычных условиях реагирует

1) оксид азота (II)

2) оксид железа (II)

3) оксид железа (III)

Ответ: 4

Пояснение:

Оксид азота (II) NO является несолеобразующим оксидом, поэтому не взаимодействует ни с водой, ни с основаниями.

Оксид железа (II) FeO является основным оксидом, не растворимым в воде. С водой не реагирует.

Оксид железа (III) Fe 2 O 3 является амфотерным оксидом, не растворимым в воде. С водой также не реагирует.

Оксид азота (IV) NO 2 является кислотным оксидом и реагирует с водой с образованием азотной (HNO 3 ; N +5) и азотистой (HNO 2 ; N +3) кислот:

2NO 2 + H 2 O = HNO 3 + HNO 2

В перечне веществ: ZnO, FeO, CrO 3 , CaO, Al 2 O 3 , Na 2 O, Cr 2 O 3
число оснόвных оксидов равно

Ответ: 3

Пояснение:

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

  • — оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;
  • — оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;
  • — оксиды переходных металлов в низших степенях окисления.

Из предложенных вариантов к группе основных оксидов относятся FeO, CaO, Na 2 O.

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

К амфотерным оксидам относятся ZnO, Al 2 O 3 , Cr 2 O 3 .

Кислотные оксиды (ангидриды) — оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от +4 до +7. Следовательно, CrO 3 – кислотный оксид, соответствующий хромовой кислоте H 2 CrO 4 .

382482

Оксид калия взаимодействует с

Ответ: 3

Пояснение:

Оксид калия (K 2 O) относится к основным оксидам. Как основный оксид K 2 O может взаимодействовать с амфотерными оксидами, т.к. с оксидами, проявляющими как кислотные, так и основные свойства (ZnO). ZnO является амфотерным оксидом. Не реагирует с основными оксидами (CaO, MgO, Li 2 O).

Реакция протекает следующим образом:

K 2 O + ZnO = K 2 ZnO 2

Основные оксиды – это оксиды металлов в степенях окисления +1 и +2. К ним относятся:

— оксиды металлов главной подгруппы первой группы (щелочные металлы) Li – Fr;

— оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg – Ra;

— оксиды переходных металлов в низших степенях окисления.

Амфотерные оксиды – солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от +3 до +4, за исключением ZnO, BeO, SnO, PbO.

Кроме того, существуют несолеобразующие оксиды N 2 O, NO, SiO, CO. Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли.

Оксид кремния (IV) взаимодействует с каждым из двух веществ

2) H 2 SO 4 и BaCl 2

Ответ: 3

Пояснение:

Оксид кремния (SiO 2) является кислотным оксидом, поэтому взаимодействует с щелочами и основными оксидами:

SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O



Понравилась статья? Поделитесь ей
Наверх