Электромагнитная индукция в современной технике. Электромагнитная индукция и ее применение

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле. На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты. Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток. Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции, вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Тема : Использование электромагнитной индукции

Цели урока :

Образовательная:

  1. Продолжить работу над формированием понятия об электромагнитном поле как виде материи и доказательства его реального существования.
  2. Совершенствовать навыки решения качественных и расчетных задач.

Развивающая: Продолжить работу с учащимися над...

  1. формированием представлений о современной физической картине мира,
  2. умением раскрывать взаимосвязь между изученным материалом и явлениями жизни,
  3. расширением кругозора учащихся

Воспитательная: Научиться видеть проявления изученных закономерностей в окружающей жизни

Демонстрации

1. Трансформатор
2. Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий»

1)«Выработка электроэнергии»
2)«Запись и считывание информации на магнитной ленте»

3. Презентации

1) «Электромагнитная индукция – тесты» (I и II части)
2) «Трансформатор»

Ход урока

1. Актуализация:

Перед тем, как рассматривать новый материал, ответьте, пожалуйста, на следующие вопросы:

2. Решение задач по карточкам, см. презентацию (Приложение 1) (ответы: 1 Б, 2 Б, 3 В, 4 А, 5 В) – 5 мин

3. Новый материал .

Использование электромагнитной индукции

1) В прошлом учебном году при изучении по информатике темы «Носители информации» мы говорили о дисках, дискетах и т.д. Оказывается запись, и считывание информации с помощью магнитной ленты основано на применении явления электромагнитной индукции.
Запись и воспроизведение информации с помощью магнитной ленты (Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Запись и считывание информации на магнитной ленте» – 3 мин) (Приложение 2)

2) Рассмотрим устройство и принципиальное действие такого прибора, как ТРАНСФОРМАТОР. (см. презентацию Приложение 3)
Действие трансформатора основано на явлении электромагнитной индукции.

ТРАНСФОРМАТОР – аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения при неизменной частоте.

3) В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.

а) повышающий трансформатор

б) понижающий трансформатор

При передаче энергии на большое расстояние – использование понижающих и повышающих трансформаторов.

4) Работа трансформатора (проведение опыта).

Загорание лампочки во вторичной катушке (объяснение данного опыта );
- принцип работы сварочного аппарата (Почему витки во вторичной катушке понижающего трансформатора толще? );
- принцип работы печи (Мощность в обеих катушках одинакова, а сила тока? )

5) Практическое применение электромагнитной индукции

Примеры технического использования электромагнитной индукции: трансформатор, генератор электрического тока – основной источник электричества.
Благодаря открытию электромагнитной индукции стала возможной выработка дешевой электрической энергии. Основой работы современных электростанций (в том числе и атомных) является индукционный генератор .
Генератор переменного тока (фрагмент диска Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Выработка электроэнергии» - 2 мин) (Приложение 4)

Индукционный генератор состоит из двух частей: подвижного ротора и неподвижного статора. Чаще всего статор представляет собой магнит (постоянный или электрический), создающий исходное магнитное поле (его называют индуктором). Ротор состоит из одной или нескольких обмоток, в которых под действием изменяющегося магнитного поля создается индукционный ток. (Другое название такого ротора - якорь).

- обнаружение металлических предметов – специальные детекторы;
- поезд на магнитных подушках (см. стр. 129 учебника В. А. Касьянов «Физика – 11»)
токи Фуко (вихревые токи;)
замкнутые индукционные токи, возникающие в массивных проводящих телах .

Появляются либо вследствие изменения магнитного поля, в котором находится проводящее тело, либо в результате такого движения тела, когда изменяется магнитный поток, пронизывающий это тело (или какую-либо его часть).
Как и любые другие токи, вихревые токи оказывают на проводник тепловое действие: тела, в которых возникают такие токи, нагреваются.

Пример: устройство электропечей для плавки металлов и СВЧ – печей .

4. Выводы, оценки.

1) Электромагнитная индукция, приведите примеры практического применения электромагнитной индукции.
2) Электромагнитные волны – самый распространенный вид материи, а электромагнитная индукция – частный случай проявления электромагнитных волн.

5. Решение задач по карточкам, см. презентацию (Приложение 5) (ответы - 1В, 2А, 3А, 4Б).

6. Дом задание: П.35,36 (Учебник физики под ред. В.А.Касьянова 11 класс)

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

А= U*I*t=I2 R*t=U2 /R *t

По закону сохранения энергии: работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

{A}=B*A*c= Вт*с=ДЖ; 1кВт*ч=3 600 000 ДЖ

Закон Джоуля-Ленца

При прохождении тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

A=Q=U*I*t=I2 *R*t=U2 /R*t

Выражение представляет собой закон Джоуля--Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.:

dQ=UIdt=I2 Rdt=U2 /R*dt.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Основные свойства магнитного поля: порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем; действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела; переменное магнитное поле порождает переменное электрическое поле. Правило буравчкиа: Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции

Правило левой руки позволяет определить силу Ампера, т.е. силу, с которой магнитное поле действует на проводник с током. Если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца направлены по току, то отогнутый на 90градусов большой палец покажет направление силы ампера.

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда. Сила Лоренца Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор F~ силы Лоренца находится следующим образом. 1.

Абсолютная величина силы Лоренца равна:

Здесь q -- абсолютная величина заряда, v -- скорость заряда, B -- индукция магнитного поля, б -- угол между векторами ~v и B~ .

Сила Лоренца перпендикулярна обоим векторам ~v и B~ . Иными словами, вектор F~ перпен- дикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля. Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая -- к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спирали стрелка гальванометра в цепи второй спирали отклонялась.

Опыты Фарадея.

Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:

1. возникновение индукционного тока при вдвигании и выдвигании магнита (катушки с током);

Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.

2. возникновение индукционного тока в одной катушке при изменении тока в другой катушке.

Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.

Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э.д.с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока Ф>0, а еинд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.

При уменьшении магнитного потока Ф<0, а еинд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл - оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой -- слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.

магнитный индукционный ток фарадей

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S - от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Явление электромагнитной индукции представляет собой феномен, который заключается в возникновении электродвижущей силы или напряжения в теле, находящемся в магнитном поле, которое постоянно изменяется. Электродвижущая сила в результате электромагнитной индукции также возникает, если тело движется в статическом и неоднородном магнитном поле или же вращается в магнитном поле так, что его линии, пересекающие замкнутый контур, изменяются.

Индуцированный электрический ток

Под понятием "индукция" подразумевается возникновение какого-либо процесса в результате воздействия другого процесса. Например, электрический ток может быть индуцирован, то есть может появиться в результате воздействия особым образом на проводник магнитного поля. Такой электрический ток называется индуцированным. Условия образования электрического тока в результате явления электромагнитной индукции рассматриваются далее в статье.

Понятие о магнитном поле

Прежде чем начать изучение явления электромагнитной индукции, необходимо разобраться, что представляет собой магнитное поле. Говоря простыми словами, под магнитным полем подразумевают область пространства, в которой магнитный материал проявляет свои магнитные эффекты и свойства. Эта область пространства может быть изображена с помощью линий, которые называются линиями магнитного поля. Количеством этих линий изображают физическую величину, которая называется магнитным потоком. Линии магнитного поля являются замкнутыми, они начинаются на северном полюсе магнита и заканчиваются на южном.

Магнитное поле обладает способностью воздействовать на любые материалы, обладающие магнитными свойствами, например, на железные проводники электрического тока. Это поле характеризуется магнитной индукцией, которая обозначается B и измеряется в теслах (Тл). Магнитная индукция в 1 Тл - это очень сильное магнитное поле, которое действует с силой в 1 ньютон на точечный заряд в 1 кулон, который пролетает перпендикулярно линиям магнитного поля со скоростью 1 м/с, то есть 1 Тл = 1 Н*с/(м*Кл).

Кто открыл явление электромагнитной индукции?

Электромагнитная индукция, на принципе работы которой основаны многие современные приборы, была открыта в начале 30-х годов XIX века. Открытие индукции принято приписывать Майклу Фарадею (дата открытия - 29 августа 1831 года). Ученый основывался на результатах опытов датского физика и химика Ханса Эрстеда, который обнаружил, что проводник, по которому течет электрический ток, создает магнитное поле вокруг себя, то есть начинает проявлять магнитные свойства.

Фарадей, в свою очередь, открыл противоположное обнаруженному Эрстедом явление. Он заметил, что изменяющееся магнитное поле, которое можно создать, меняя параметры электрического тока в проводнике, приводит к возникновению разности потенциалов на концах какого-либо проводника тока. Если эти концы соединить, например, через электрическую лампу, то по такой цепи потечет электрический ток.

В итоге Фарадей открыл физический процесс, в результате которого в проводнике появляется электрический ток из-за изменения магнитного поля, в чем и заключается явление электромагнитной индукции. При этом для образования индуцированного тока не важно, что движется: магнитное поле или сам можно легко показать, если провести соответствующий опыт по явлению электромагнитной индукции. Так, расположив магнит внутри металлической спирали, начинаем перемещать его. Если соединить концы спирали через какой-либо индикатор электрического тока в цепь, то можно увидеть появление тока. Теперь следует оставить магнит в покое и перемещать спираль вверх и вниз относительно магнита. Индикатор также покажет существование тока в цепи.

Эксперимент Фарадея

Опыты Фарадея заключались в работе с проводником и постоянным магнитом. Майкл Фарадей впервые обнаружил, что при перемещении проводника внутри магнитного поля на его концах возникает разность потенциалов. Перемещающийся проводник начинает пересекать линии магнитного поля, что моделирует эффект изменения этого поля.

Ученый обнаружил, что положительный и отрицательный знаки возникающей разности потенциалов зависят от того, в каком направлении движется проводник. Например, если проводник поднимать в магнитном поле, то возникающая разность потенциалов будет иметь полярность +-, если же опускать этот проводник, то мы уже получим полярность -+. Эти изменения знака потенциалов, разность которых называется электродвижущей силой (ЭДС), приводят к возникновению в замкнутом контуре переменного тока, то есть такого тока, который постоянно изменяет свое направление на противоположное.

Особенности электромагнитной индукции, открытой Фарадеем

Зная, кто открыл явление электромагнитной индукции и почему возникает индуцированный ток, объясним некоторые особенности этого явления. Так, чем быстрее перемещать проводник в магнитном поле, тем будет больше значение силы индуцированного тока в контуре. Еще одна особенность явления заключается в следующем: чем больше магнитная индукция поля, то есть чем сильнее это поле, тем большую разность потенциалов она сможет создать при перемещении проводника в поле. Если же проводник находится в покое в магнитном поле, никакого ЭДС в нем не возникает, поскольку нет никакого изменения в пересекающих проводник линиях магнитной индукции.

Направление электрического тока и правило левой руки

Чтобы определить направление в проводнике электрического тока, созданного в результате явления электромагнитной индукции, можно воспользоваться так называемым правилом левой руки. Его можно сформулировать следующим образом: если левую руку поставить так, чтобы линии магнитной индукции, которые начинаются на северном полюсе магнита, входили в ладонь, а оттопыренный большой палец направить по направлению перемещения проводника в поле магнита, тогда оставшиеся четыре пальца левой руки укажут направление движения индуцированного тока в проводнике.

Существует еще один вариант этого правила, он заключается в следующем: если указательный палец левой руки направить вдоль линий магнитной индукции, а оттопыренный большой палец направить по направлению движения проводника, тогда повернутый на 90 градусов к ладони средний палец укажет направление появившегося тока в проводнике.

Явление самоиндукции

Ханс Кристиан Эрстед открыл существование магнитного поля вокруг проводника или катушки с током. Также ученый установил, что характеристики этого поля прямым образом связаны с силой тока и его направлением. Если ток в катушке или проводнике будет переменным, то он породит магнитное поле, которое не будет стационарным, то есть будет меняться. В свою очередь это переменное поле приведет к возникновению индуцированного тока (явление электромагнитной индукции). Движение тока индукции будет всегда противоположно циркулирующему по проводнику переменному току, то есть будет оказывать сопротивление при каждом изменении направления тока в проводнике или катушке. Этот процесс получил название самоиндукции. Создаваемая при этом разность электрических потенциалов называется ЭДС самоиндукции.

Отметим, что явление самоиндукции возникает не только при изменении направления тока, но и при любом его изменении, например, при увеличении за счет уменьшения сопротивления в цепи.

Для физического описания сопротивления, оказываемого любому изменению тока в цепи за счет самоиндукции, ввели понятие индуктивности, которая измеряется в генри (в честь американского физика Джозефа Генри). Один генри - это такая индуктивность, для которой при изменении тока за 1 секунду на 1 ампер возникает ЭДС в процессе самоиндукции, равная 1 вольт.

Переменный ток

Когда катушка индуктивности начинает вращаться в магнитном поле, то в результате явления электромагнитной индукции она создает индуцированный ток. Этот электрический ток является переменным, то есть он систематически изменяет свое направление.

Переменный ток является наиболее распространенным, чем постоянный. Так, многие приборы, которые работают от центральной электрической сети, используют именно этот тип тока. Переменный ток легче индуцировать и транспортировать, чем постоянный. Как правило, частота бытового переменного тока составляет 50-60 Гц, то есть за 1 секунду его направление изменяется 50-60 раз.

Геометрическим изображением переменного тока является синусоидальная кривая, которая описывает зависимость напряжения от времени. Полный период синусоидальной кривой для бытового тока приблизительно равен 20 миллисекундам. По тепловому эффекту переменный ток аналогичен току постоянному, напряжение которого составляет U max /√2, где U max - максимальное напряжение на синусоидальной кривой переменного тока.

Использование электромагнитной индукции в технике

Открытие явления электромагнитной индукции произвело настоящий бум в развитии техники. До этого открытия люди были способны производить электричество в ограниченных количествах только с помощью электрических батарей.

В настоящее время это физическое явление используется в электрических трансформаторах, в обогревателях, которые индуцированный ток переводят в тепло, а также в электрических двигателях и генераторах автомобилей.

Изучение возникновения электрического тока всегда волновало ученых. После того, как в начале XIX века датский ученый Эрстед выяснил, что вокруг электрического тока возникает магнитное поле, ученые задались вопросом: может ли магнитное поле порождать электрический ток и наоборот.Первым ученым, кому это удалось, был ученый Майкл Фарадей.

Опыты Фарадея

После многочисленных проведенных опытов Фарадей смог достичь кое-каких результатов.

1.Возникновение электрического тока

Для проведения опыта он взял катушку с большим количеством витков и присоединил ее к миллиамперметру (прибору, измеряющему силу тока). По направлению вверх и вниз ученый передвигал магнит по катушке.

Во время проведения эксперимента, в катушке действительно появлялся электрический ток по причине изменения магнитного поля вокруг нее.

По наблюдениям Фарадея стрелка миллиамперметра отклонялась и указывала на то, что движение магнита порождает собой электрический ток. При остановке магнита стрелка показывала нулевую разметку, т.е. ток не циркулировал по цепи.


рис. 1 Изменение силы тока в катушке за счет передвижения реjcтата

Данное явление, при котором ток возникает под действием переменного магнитного поля в проводнике, назвали явлением электромагнитной индукции.

2.Изменение направления индукционного тока

В своих последующих исследованиях Майкл Фарадей пытался выяснить, что влияет на направление возникающего индукционного электрического тока. Проводя опыты, он заметил, что изменяя числа мотков на катушке или полярность магнитов, направление электрического тока, которое возникает в замкнутой сети меняется.

3.Явление электромагнитной индукции

Для проведения опыта ученый взял две катушки, которые расположил близко друг к другу. Первая катушка, имеющая большое количество витков проволоки, была подсоединена к источнику тока и ключу, замыкающему и размыкающему цепь. Вторую такую же катушку он присоединил к миллиамперметру уже без подключения к источнику тока.

Проводя эксперимент, Фарадей заметил, что при замыкании электрической цепи возникает индуцированный ток, что видно по движению стрелки миллиамперметра. При размыкании цепи миллиамперметр также показывал, что в цепи есть электрический ток, но показания были прямо противоположными. Когда же цепь была замкнута и равномерно циркулировала ток, тока в электрической цепи согласно данным миллиамперметра не было.

https://youtu.be/iVYEeX5mTJ8

Вывод из экспериментов

В результате открытия Фарадея была доказана следующая гипотеза: электрический ток появляется только при изменении магнитного поля. Также было доказано, что изменение числа витков в катушке изменяет значение силы тока (увеличение мотков увеличивает силу тока). Причем индуцированный электрический ток может появиться в замкнутой цепи только при наличии переменного магнитного поля.

От чего зависит индукционный электрический ток?

Основываясь на всем вышесказанном, можно отметить, что даже если есть магнитное поле, это не приведет к возникновению электрического тока, если данное поле не будет при этом переменным.

Так от чего же зависит величина индукционного поля?

  1. Число витков на катушке;
  2. Скорость изменения магнитного поля;
  3. Скорость движения магнита.

Магнитный поток является величиной, которая характеризует магнитное поле. Изменяясь, магнитный поток приводит к изменению индуцированного электрического тока.


рис.2 Изменение силы тока при перемещении а) катушки, в котором находится соленоид; б) постоянного магнита, внесением его в катушку

Закон Фарадея

Основываясь на проведенных опытах, Майкл Фарадей сформулировал закон электромагнитной индукции. Закон заключается в том, что, магнитное поле при своем изменении приводит к возникновению электрического тока, Ток же указывает на наличие электродвижущей силы электромагнитной индукции (ЭДС).

Скорость магнитного тока изменяясь влечет за собой изменение скорости тока и ЭДС.

Закон Фарадея: ЭДС электромагнитной индукции равна численно и противоположна по знаку скорости изменения магнитного потока, который проходит через поверхность, ограниченную контуром

Индуктивность контура. Самоиндукция.

Магнитное поле создается в том случае, когда ток протекает в замкнутом контуре. Сила тока при этом влияет на магнитный поток и индуцирует ЭДС.

Самоиндукция – явление, при котором ЭДС индукции возникает при изменении силы тока в контуре.

Самоиндукция изменяется в зависимости от особенностей формы контура, его размеров и среды, его содержащей.

При увеличении электрического тока, ток самоиндукции контура может замедлить его. При его уменьшении, ток самоиндукции, напротив, не дает ему так быстро убывать. Таким образом, контур начинает обладать своей электрической инертностью, замедляющей любое изменение тока.

Применение индуцированного ЭДС

Явление электромагнитной индукции имеет применение на практике в генераторах, трансформаторах и двигателях, работающих на электричестве.

При этом ток для этих целей получают следующими способами:

  1. Изменение тока в катушке;
  2. Движение магнитного поля через постоянные магниты и электромагниты;
  3. Вращение витков или катушек в постоянном магнитном поле.

Открытие электромагнитной индукции Майкла Фарадея внесло большой вклад в науку и в нашу обыденную жизнь. Это открытие послужило толчком для дальнейших открытий в области изучения электромагнитных полей и имеет широкое применение в современной жизни людей.



Понравилась статья? Поделитесь ей
Наверх