Функциями коры больших полушарий не являются. Какие функции выполняет кора больших полушарий? Условный сигнал Подкрепление

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Тема нашей лекции « Функции коры больших полушарий».

Головной мозг находится в полости мозгового черепа. Имеет выпуклую верхнелатеральную и нижнюю поверхности, а также уплощенную поверхность - основание головного мозга.

Большой мозг состоит из двух полушарий - правого и левого, которые связаны комиссурой - мозолистым телом. Правое и левое полушария делятся с помощью продольной щели. Под комиссурой находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между мозолистым телом и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушария имеют верхнелатеральную, медиальную и нижнюю поверхности. Верхнелатеральная - выпуклая, медиальная - плоская, обращенная к такой же поверхности другого полушария, и нижняя - неправильной формы. На трех поверхностях располагаются глубокие и мелкие борозды, и между ними извилины. Борозды - углубления между извилинами. Извилины - возвышения мозгового вещества.

Поверхности полушарий большого мозга отделены друг от друга краями - верхним, нижнелатеральным и нижневертикальным. В пространстве между двумя полушариями входит большой серповидный отросток, представляющий собой тонкую пластинку твердой оболочки, которая проникает в продольную щель большого мозга, не достигая мозолистого тела, и отделяет друг от друга правое и левое полушария.

Наиболее выступающие участки полушарий получили название полюсов: лобного, затылочного и височного. Рельеф поверхностей полушарий большого мозга очень сложен и связи с наличием более или менее глубоких борозд большого мозга и расположенных между ними валикообразных возвышений - извилин. Глубина, протяженность некоторых борозд и извилин, их форма и направление очень изменчивы.

Каждое полушарие делится на доли - лобную, теменную, затылочную, височную , островковую. Центральная борозда отделяет лобную долю от теменной, латеральная борозда - височную долю от лобной и теменной, теменно-затылочная борозда разделяет теменную и затылочную доли.

Кора больших полушарий состоит горизонтальных слоев, расположенных в направлении с поверхности в глубь.

I. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

II. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

III. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

IV. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

V. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

VI. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

В первом и четвертом слоях происходят восприятие и обработка поступающих в кору сигналов. Нейроны второго и третьего слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в пятом и шестом слоях.

Более детально деление коры на различные поля проведено на основе формы и расположения нейронов Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает следующие поля: 8, 9, 10, 11, 12, 44, 45, 46, 47. В прецентральную область входят 4 и 6 поле, в постцентральную область входят 1, 2, 3 и 43 поле. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная область 17 18 19. Височная область состоит из очень большого количества полей.

В коре выделяют сенсорные, ассоциативные и двигательные зоны, исходя из расположения нейронов:

Проблема локализации функций в коре больших полушарий имеет три концепции:

Принцип узкой локализации - все функции помещены в одну, отдельно взятую структуру.

Концепция эквипотенциала - различные корковые структуры функционально равноценны.

Принцип многофункциональности корковых полей.

Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры - это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Сенсорная кора имеет хорошо выраженные вторые и четвертые слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями. Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий, которую обозначают как первичная соматосенсорная область. Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног - в верхнемедиальных зонах извилины, проекция нижней части голени и стоп - в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела. Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Вторичная соматосенсорная область меньших размеров расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции вторичной соматосенсорной области изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

Другой первичной сенсорной зоной является слуховая кора, которая расположена в глубине латеральной борозды. В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область. Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения.

Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области. Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы.

Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела, центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи, находящийся в задних отделах верхней височной извилины. Этот центр обеспечивает речевой гнозис - распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентральной извилины. Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины, центр моторной течи Брока в заднем отделе нижней лобной извилины, обеспечивающий речевой праксис, а также музыкальный моторный центр, определяющий тональность речи, способность петь.

В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки пятого слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток пятого слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ?-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ?-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины.

Волокна пирамидного пути оканчиваются на альфа-мотонейронах двигательных ядер третьего - седьмого и девятого - двенадцатого черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь).

Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре.

Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь. В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути.

Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути.

Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения - в ассоциативной коре больших полушарий, программы движений - в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения у человека проявляются в двух формах - функциональной асимметрии больших полушарий и совместной их деятельности.

Межполушарная асимметрия как одна из важных особенностей функционирования высших отделов мозга в основном определяется двумя моментами: 1) асимметричной локализацией нервного аппарата второй сигнальной системы и 2) доминированием правой руки как мощного средства адаптивного поведения человека. Этим и объясняется, что первые представления о функциональной роли межполушарной асимметрии возникли лишь тогда, когда удалось установить локализацию нервных центров речи (моторного — центра Брока и сенсорного — центра Вернике в левом полушарии).

Перекрестная проекция видов сенсорной чувствительности и нисходящих пирамидных путей — регуляторов моторной сферы организма — в сочетании с левосторонней локализацией центра устной и письменной речи определяет доминирующую роль левого полушария в поведении человека, управляемого корой больших полушарий.

Полученные экспериментальные данные подтверждают представление о доминирующей роли левого полушария мозга в реализации функций второй сигнальной системы, в мыслительных операциях, в творческой деятельности с преобладанием форм абстрактного мышления. В общем виде можно считать, что люди с левополушарным доминированием относятся к мыслительному типу, а с правополушарным доминированием — к художественному.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга.

При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) - правым.

Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса - левое.

Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения.

В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными.

Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

У человека, как и у многих животных, большинство органов парные: две руки, две ноги, два глаза, два уха, две почки, два полушария мозга. Парность органов не означает их одинаковое функционирование. Мы знаем, какая рука у нас ведущая - выполняет наиболее сложные, тонкие операции. У большинства людей - это правая рука. Мы едим, шьем, пишем, рисуем правой рукой. Среди людей - правшей, использующих для точных действий правую руку, 90%, тогда как левши составляют в среднем 10%.

Левши всех рас и культур в прошлом и настоящем находились в меньшинстве среди праворукого окружения.

При изучении вопроса о происхождении левшества выделились три основных направления: «генетическое», «культурное» и «патологическое».

В настоящее время наибольшее распространение получили две генетические модели. Согласно одной асимметрия мозга определяется присутствием одного гена, который был назван ею фактором «правого сдвига». Если данный фактор имеется у индивидуума, последний предрасположен быть правшой. Если фактор отсутствует, человек может быть либо левшой, либо правшой в зависимости от случайных обстоятельств. При этом большое значение придается повреждениям мозга в пренатальном и раннем постнатальном периоде, которые могут повлиять на фенотипическую реализацию фактора «правого сдвига».

Более сложная модель была предложена Леви и Нагилаки (1972). Эти ученые предполагают, что рукость является функцией двух генов. Один ген с двумя аллелями определяет полушарие, которое будет контролировать речь и ведущую руку.

На вероятность не генетической, а цитоплазматической закодированности асимметрии указывает Морган (1978), выдвигая концепцию, согласно которой и мозговая латерализация, и мануальное предпочтение рассматриваются в широком общебиологическом аспекте. Предполагается, что развитие мозга находится под влиянием лево-правого градиента, а это приводит к более раннему и быстрому созреванию в онтогенезе левого полушария, которое при этом оказывает тормозящее влияние на правое - в результате возникает доминирование левого полушария по речи и праворукость.

С «генетическим» направлением непосредственно сочетаются исследования, связанные с выявлением анатомических, физиологических и морфологических стигматов, свойственных правшам и левшам. Показано, что у правшей сильвиева борозда справа расположена выше левой, в то время, как у 71% левшей правая и левая борозды примерно симметричны.

У правшей отмечается больший диаметр внутренней сонной артерии слева и выше давление в ней, чем в правой, а у левшей - обратная картина.

Аналогичная диссоциация выявляется у правшей и левшей при изучении средней мозговой артерии. Гипотеза Гершвинда и Галабурды также предполагает эндокринное влияние на формирование различий в строении мозга мужчин и женщин. Известна теория Превика, согласно которой церебральная латерализация у человека формируется при асимметричном пренатальном развитии системы внутреннего уха и лабиринта.

Существует и генетико-культурная гипотеза функциональной асимметрии. Английский ученый из Кембриджа Лэлэнд и его коллеги считают, что левшество является в равной степени генетически и культурологически обусловленным.

Альтернативными «генетическим» представляются гипотезы возникновения межполушарной асимметрии, базирующиеся на признании детерминирующей роли культурных условий в формировании рукости. «Культурно-социальные» концепции рассматривают правшество-левшество как следствие социального воспитания, опыта, условий жизни.

Наряду с представленными выше теориями, широко распространены представления о патологическом происхождении левшества. Крайней точки зрения придерживается Бэкан (1973), который утверждает, что любое проявление леворукости есть следствие родовой травмы. По мнению Чуприкова (1975), изменение моторного доминирования является одним из объективных доказательств врожденной энцефалопатии. В подтверждение приводятся факты увеличения левшей среди близнецов, особенности пренатального развития которых предполагают риск внутриутробной гипоксии мозга. В пользу этого подхода говорят и результаты проб Вада, согласно которым повреждение левого полушария на ранних этапах онтогенеза может привести к смене ведущей руки и доминантного по речи полушария.

Изучение вопроса о происхождении латеральности продолжается. Обилие фактов, подчас противоречащих друг другу, показывает, что каждая из теорий функциональной межполушарной асимметрии мозга требует дальнейшего обоснования. Вместе с тем очевидно, что основополагающие принципы вышеперечисленных подходов составляют базу для будущего системного исследования, необходимость которого вытекает из множества проблем и вопросов, оставшихся открытыми.

Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейрон ов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
Корковые нейрон ы и их связи. Несмотря на огромное число нейрон ов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейрон ы.
...
В афферентной функции коры и в процессах переключения возбуждения на соседние нейрон ы основная роль принадлежит звездчатым нейрон ам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксон ы, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендрит ы. Звездчатые нейрон ы участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейрон ов.

Пирамидные нейрон ы осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейрон ами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит , через который в клетку поступают различные афферентные влияния от других нейрон ов, а вертикально вниз отходит эфферентный отросток - аксон .

Многочисленность контактов (например, только на дендрит ах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейрон ов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейрон ных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

...
Первичные, вторичные и третичные поля коры . Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенез е, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецептор ов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейрон ы. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышлени е (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысл енные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарии . Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психи ческих процессов восприятия, представления, мышлени я. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы-см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
...
Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.

Кора больших полушарий головного мозга в филогенетическом отношении является высшим и наиболее молодым отделом центральной нервной системы.

Кора мозга состоит из нервных клеток, их отростков и нейроглии. У взрослого человека толщина коры в большинстве областей составляет около 3 мм. Площадь коры больших полушарий благодаря многочисленным складкам и бороздам составляет 2500 см 2 . Для большинства участков коры головного мозга характерно шестислойное расположение нейронов. Кора больших полушарий состоит из 14-17 млрд. клеток. Клеточные структуры коры головного мозга представлены пирамидными, веретенообразными и звездчатыми нейронами.

Звездчатые клетки выполняют главным образом афферентную функцию. Пирамидные и веретенообразные клетки - это преимущественно эфферентные нейроны.

В коре больших полушарий имеются высокоспециализированные нервные клетки, воспринимающие афферентные импульсы от определенных рецепторов (например, от зрительных, слуховых, тактильных и т. д.). Имеются также нейроны, которые возбуждаются нервными импульсами, идущими от разных рецепторов организма. Это так называемые полисенсорные нейроны.

Отростки нервных клеток коры головного мозга связывают ее различные отделы между собой или устанавливают контакты коры больших полушарий с нижележащими отделами центральной нервной системы. Отростки нервных клеток, соединяющие между собой различные участки одного и того же полушария называются ассоциативными , связывающие чаще всего одинаковые участки двух полушарий - комиссуральными и обеспечивающие контакты коры головного мозга с другими отделами центральной нервной системы и через них со всеми органами и тканями тела - проводящими (центробежными). Схема этих путей приведена на рисунке.

Схема хода нервных волокон в больших полушариях головного мозга.

1 - короткие ассоциативные волокна; 2 - длинные ассоциативные волокна; 3 - комиссуральные волокна; 4 - центробежные волокна.

Клетки нейроглии выполняют ряд важных функций: они являются опорной тканью, участвуют в обмене веществ головного мозга, регулируют кровоток внутри мозга, выделяют нейросекрет, который регулирует возбудимость нейронов коры головного мозга.

Функции коры головного мозга.

1) Кора головного мозга осуществляет взаимодействие организма с окружающей средой за счет безусловных и условных рефлексов;

2) она является основой высшей нервной деятельности (поведения) организма;

3) за счет деятельности коры головного мозга осуществляются высшие психические функции: мышление и сознание;

4) кора головного мозга регулирует и объединяет работу всех внутренних органов и регулирует такие интимные процессы, как обмен веществ.

Таким образом, с появлением коры головного мозга она начинает контролировать все процессы, протекающие в организме, а также всю деятельность человека, т. е. происходит кортиколизация функций. И. П. Павлов, характеризуя значение коры головного мозга, указывал, что она является распорядителем и распределителем всей деятельности животного и человеческого организма.

По современным представлениям, различают три типа зон коры головного мозга: первичные проекционные зоны, вторичные и третичные (ассоциативные).

Первичные проекционные зоны - это центральные отделы ядер анализаторов. В них расположены высокодифференцированные и специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (зрительных, слуховых, обонятельных и др.). В этих зонах происходит тонкий анализ афферентных импульсов различного значения. Поражение указанных зон ведет к расстройствам чувствительных или двигательных функций.

Вторичные зоны - периферические отделы ядер анализаторов. Здесь происходит дальнейшая обработка информации, устанавливаются связи между различными по характеру раздражителями. При поражении вторичных зон возникают сложные расстройства восприятий.

Третичные зоны (ассоциативные ) . Нейроны этих зон могут возбуждаться под влиянием импульсов, идущих от рецепторов различного значения (от рецепторов слуха, фоторецепторов, рецепторов кожи и т. д.). Это так называемые полисенсорные нейроны, за счет которых устанавливаются связи между различными анализаторами. Ассоциативные зоны получают переработанную информацию от первичных и вторичных зон коры больших полушарий. Третичные зоны играют большую роль в формировании условных рефлексов, они обеспечивают сложные формы познания окружающей действительности.

Значение различных областей коры головного мозга . В коре большого мозга выделяют сенсорные, моторные области

Сенсорные области коры . (проекционная кора, корковые отделы анализаторов). Это зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса – вентральных задних, латерального и медиального. Сенсорные области коры образованы проекционными и ассоциативными зонами основных анализаторов.

Область кожной рецепции (мозговой конец кожного анализатора) представлена в основном задней центральной извилиной. Клетки этой области воспринимают импульсы от тактильных, болевых и температурных рецепторов кожи. Проекция кожной чувствительности в пределах задней центральной извилины аналогична таковой для двигательной зоны. Верхние участки задней центральной извилины связаны с рецепторами кожи нижних конечностей, средние - с рецепторами туловища и рук, нижние - с рецепторами кожи головы и лица. Раздражение этой.области у человека во время нейрохирургических операций вызывает ощущения прикосновения, покалывания, онемения, при этом никогда не наблюдается выраженных болевых ощущений.

Область зрительной рецепции (мозговой конец зрительного анализатора) расположена в.затылочных долях коры головного мозга обоих полушарий. Эту область следует рассматривать как проекцию сетчатой оболочки глаза.

Область слуховой рецепции (мозговой конец слухового анализатора) локализуется в височных долях коры головного мозга. Сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. При повреждении этой зоны может возникнуть музыкальная и словесная глухота, когда человек слышит, но не понимает значения слов; Двустороннее поражение слуховой области приводит к полной глухоте.

Область вкусовой рецепции (мозговой конец вкусового анализатора) расположена в нижних долях центральной извилины. Эта область получает нервные импульсы от вкусовых рецепторов слизистой оболочки полости рта.

Область обонятельной рецепции (мозговой конец обонятельного анализатора) располагается в передней части грушевидной доли коры головного мозга. Сюда поступают нервные импульсы от обонятельных рецепторов слизистой оболочки носа.

В коре больших полушарий обнаружено несколько зон, ведающих функцией речи (мозговой конец речедвигательного анализатора). В лобной области левого полушария (у праворуких) располагается моторный центр речи (центр Брока). При его поражении речь затруднена или даже невозможна. В височной области находится сенсорный центр речи (центр Вернике). Повреждение этой области приводит к расстройствам восприятия речи: больной не понимает значение слов, хотя способность произносить слова сохранена. В затылочной доле коры головного Мозга имеются зоны, обеспечивающие восприятие письменной (зрительной) речи. При поражении этих областей больной не понимает написанного.

В теменной области коры больших полушарий не обнаружены мозговые концы анализаторов, ее относят к ассоциативным зонам. Среди нервных клеток теменной области найдено большое количество полисенсорных нейронов, которые способствуют установлению связей между различными анализаторами и играют большую роль в формировании рефлекторных дуг условных рефлексов

Моторные области коры Представление о роли двигательной коры большого мозга двояко. С одной стороны, было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны тела, что говорило о том, что кора непосредственно участвует в реализации двигательных функций. В то же время признано, что двигательная область является анализаторной, т.е. представляет собой корковый отдел двигательного анализатора.

Мозговой отдел двигательного анализатора представлен передней центральной извилиной и расположенными вблизи нее участками лобной области. При ее раздражении возникают разнообразные сокращения скелетной мускулатуры на противоположной стороне. Установлено соответствие между определенными зонами передней центральной извилины и скелетной мускулатурой. В верхних участках этой зоны проецируется мускулатура ног, в средних - туловища, в нижних - головы.

Особый интерес представляет собственно лобная область, которая достигает у человека наибольшего развития. При поражении лобных областей у человека нарушаются сложные двигательные функции, обеспечивающие трудовую деятельность и речь, а также приспособительные, поведенческие реакции организма.

Любая функциональная зона коры головного мозга находится и в анатомическом, и в функциональном контакте с другими зонами коры больших полушарий, с подкорковыми ядрами, с образованиями промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.

Головной мозг располагается в мозговом отделе черепа. Его средний вес 1360 г. Выделяют три больших отдела мозга: ствол, подкорковый отдел и кару больших полушарий. Из основания мозга выходят 12 пар черепных нервов.

1 - верхний участок спинного мозга; 2 - продолговач ый мозг, 3 - мост, 4 - мозжечок; 5 - средний мозг; 6 - четверохолмие; 7 - промежуточный мозг; 8 - кора больших полушарий; 9 - мозолистое тело, соединяющее правое полушарие с новым; 10 - перекрест зрительных нервов; 11 - обонятельные луковицы.

Отделы головного мозга и их функции

Отделы мозга

Структуры отделов

Функции

СТВОЛ МОЗГА

Задний мозг

Продолговатый мозг

Здесь находятся ядра с отходящими парами черепно-мозговы> нервов:

XII - подъязычных; XI - добавочных; X - блуждающих; IX - языкоглоточных нервов

Проводниковая - связь спинного и вышележащих отделов головного мозга.

Рефлекторные:

1) регуляция деятельности дыхательной, сердечно-сосудистой и пищеварительной систем;

2) пищевые рефлексы слюноотделения, жевания, глотания;

3) защитные рефлексы: чихание, моргание, кашель, рвота;

Варолиев мост

содержит ядра: VIII - слухового; VII - лицевого; VI - отводящего; V - тройничного нервов.

Проводниковая - содержит восходящие и нисходящие нервные пути и нервные волокна, соединяющие полушария мозжечка между собой и с корой большого мозга. Рефлекторная - отвечает за вестибулярные и шейные рефлексы, регулирующие тонус мышц, в т.ч. мимических мышц.

Мозжечок

Полушария мозжечка соединены между собой и образованы серым и белым веществом.

Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия.

Ретикулярная формация - сеть нервных волокон, оплетающих ствол мозга и промежуточный мозг. Обеспечивает взаимодействие восходящих и нисходящих путей мозга, координацию различных функций организма и регуляцию возбудимости всех отделов ЦНС.

Средний мозг

Четверохолмие

С ядрами первичных зрительных и слуховых центров.

Ножки мозга

С ядрами IV - глазодвигательного III - блокового нервов.

Проводниковая.

Рефлекторны:

1) ориентировочные рефлексы на зрительные и звуковые раздражители,которые проявляются в повороте головы и туловища;

2) регуляция мышечного тонуса и позы тела.

ПОДКОРКА

Передний мозг

Промежуточный мозг:

а) таламус (зрительный бугор) с ядрами ll -й пары зрительных нервов;

Сбор и оценка всей поступающей информации от органов чувств. Выделение и передача в кору мозга наиболее важной информации. Регуляция эмоционального поведения.

б) гипоталамус.

Высший подкорковый центр вегетативной нервной системы и всех жизненно важных функций организма. Обеспечение постоянства внутренней среды и обменных процессов организма. Регуляция мотивированного поведения и обеспечение защитных реакций (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие). Участие в смене сна и бодрствования.

Базальные ганглии (подкорковые ядра)

Роль в регуляции и координации двигательной активности (вместе с таламусом и мозжечком). Участие в создании и запоминании программ целенаправленных движений,обучения и памяти.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Древняя и старая кора (обонятельный и висцеральный мозг) Содержит ядра 1-ой пары обонятельных нервов.

Древняя и старая кора вместе с некоторыми подкорковыми структурами формирует лимбическую систему, которая:

1) отвечает за врожденные поведенческие акты и формирование эмоций;

2) обеспечивает гомеостаз и контроль реакций, направленных на самосохранение и сохранение вида:

3 влияет на регуляцию вегетативных функций.

Новая кора

1) Осуществляет высшую нервную деятельность, отвечает за сложное сознательное поведение и мышление. Развитие морали, воли, интеллекта, связаны с деятельностью коры.

2) Осуществляет восприятие, оценку и обработку всей поступающей информации от органов чувств.

3) Координирует деятельность всех систем организма.

4) Обеспечивает взаимодействие организма с внешней средой.


Кора больших полушарий головного мозга

Кора больших полушарий - филогенетически наиболее молодое образование мозга. За счет борозд общая площадь поверхности коры взрослого человека 1700 2000 см2. В коре насчитывают от 12 до 18 млрд, нервных клеток, которые расположены в несколько слоев. Кора представляет собой слой серого вещества толщиной 1,5-4 мм.

На рисунке ниже показаны функциональные зоны и доли коры головного мозга

Расположение серого и белого вещества

Доли полушарий

Зоны полушарий

Кора – серое вещество, белое вещество нахо-дится под ко-рой, в белом веществе есть скопления серо-го вещества в виде ядер

Центры речи

Теменная

Кожно-мышечная зона

Контроль дви-жений, спо-собность раз-личать раздражения

Височная

Слуховая зона

Дуги рефлексов, различающих звуковые раздражения

Вкусовая и обонятельная зоны

Рефлексы различения вкусов и запахов

Затылочная

Зрительная зона

Различение зрительных раздражений

Чувствительная и двигательная зоны коры больших полушарий

Левое полушарие мозга

Правое полушарие мозга

Левое полушарие ("мыслительное”, логическое) - - отвечает за регуляцию речевой деятельности, устной речи, письма, счета и логического мышления. Доминантное у правшей.

Правое полушарие ("художественное", эмоциональное) - - участвует в распознавании зрительных, музыкальных образов, формы и структуры предметов, в сознательной ориентации в пространстве.

Поперечный срез левого полушария через чувствительные центры

Представительство тела в чувствительной зоне коры больших полушарий. Чувствительная зона каждого полушария получает информацию от мышц, кожи и внутренних органов противоположной стороны тела.

Поперечный срез правого полушария через двигательные центры

Представительство тела в двигательной зоне коры больших полушарий. Каждый участок двигательной зоны контролирует движения конкретной мышцы.

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.



Понравилась статья? Поделитесь ей
Наверх