Средства индивидуальной и коллективной защиты в рентгенодиагностике. Методы защиты от рентгеновского излучения Меры защиты от вредного воздействия рентгеновских лучей

Стационарные средства радиационной защиты процедурной и других помещений рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы (ПД) для персонала и населения (табл. 9.1, т.1, ).

Значения допустимой мощности эффективной дозы ДМЭД (мкЗв/ч) рассчитываются, исходя из основных пределов годовой дозы для соответствующих категорий облучаемых лиц (табл. 9.1, т.1) и возможной продолжительности их пребывания в помещениях и на территориях различного назначения по формуле:

где ПД - основной предел годовой дозы для соответствующей кате-

гории лиц (табл. 9.1, т.1), мЗв; с - продолжительность работы на рентгеновском аппарате в течение года при односменной работе персонала

группы A, c 1500 ч (30-часовая рабочая неделя); п - коэффициент сменности, учитывающий возможность двухсменной работы на рентгеновском аппарате и связанную с этим увеличенную продолжительность облучения персонала группы Б и населения, отн. ед.; Т. коэффициент занятости помещения или территории для соответствующих категорий облучаемых лиц, учитывающий максимально возможную продолжительность их облучения, отн. ед.; 10 - множитель для перевода мЗв в мкЗв.

В табл. 10.1 приведены значения ДМЭД для различных помещений и территорий, в зависимости от значений коэффициентов занятости Т, сменности п и продолжительности работы с учетом сменности t c -n.

Приведенные в табл. 10.1 ДМЭД используются для целей радиационного контроля.

Расчет стационарной защиты при проектировании основан на определении требуемой кратности ослабления К мощности поглощенной дозы в воздухе рентгеновского излучения в данной точке в

отсутствие защиты до такого значения проектной мощности дозы 1 за защитой, которая обеспечивает не превышение ДМЭД. Кратность ослабления К защиты вычисляется по формуле:

где: к - коэффициент перехода от поглощенной дозы в воздухе к эффективной дозе, Зв/Гр; с учетом коэффициента запаса на проектирование, равного 2, консервативно принят 1 Зв/Гр; R - радиационный выход рентгеновского аппарата, мГр-м /(мА-мин); W - рабочая нагрузка рентгеновского аппарата, (мА-мин)/нед; N - коэффициент направленности излучения, отн. ед.; 30 - значение нормированного времени работы рентгеновского аппарата в неделю при односменной работе персонала группы А (30 - часовая рабочая неделя), ч/нед; г - расстояние от фокуса рентгеновской трубки до точки расчета, м; 10 - множитель для перевода мГр в мкГр.

Таблица 10.1

Допустимая мощность эффективной дозы (ДМЭД) в помещениях рентгеновского кабинета, в других помещениях и на прилегающей территории в зависимости от значений параметров Т, n, t c -n

Помещение, территория

Помещения постоянного пребывания персонала группы А (процедурная, комната управления, комната приготовления бария, фотолаборатория, кабинет врача- рентгенолога, предоперационная и ДР-)

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета, имеющие постоянные рабочие места персонала группы Б

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета без постоянных рабочих мест (холл, гардероб, лестничная площадка, коридор, комната отдыха, уборная, кладовая и др.)

Помещения эпизодического пребывания персонала группы Б (технический этаж, подвал, чердак и др.)

Палаты стационара, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета

Территория, прилегающая к наружным стенам процедурной рентгеновского кабинета

Значение радиационного выхода R берется из технической документации на рентгеновский аппарат или протокола контроля эксплуатационных параметров в зависимости от напряжения на рентгеновской трубке. При их отсутствии используются средние значения R, приведенные в табл. 6 приложения 3 Правил .

Значения номинальной рабочей нагрузки W и анодного напряжения V , используемых для расчета стационарной защиты рентгеновских кабинетов, в зависимости от типа и назначения рентгеновского аппарата приведены в табл. 10.2. Значения W рассчитаны с учетом регламентированной длительности проведения соответствующих рентгенологических процедур.

Коэффициент направленности N учитывает направление пучка рентгеновского излучения. Суммарно по всем направлениям падения первичного пучка рентгеновского излучения (с учетом всех возможных вариантов позиционирования пациента) значение N принимается равным 1. Для рассеянного излучения значение N принимается 0,05. Для аппаратов с подвижным источником излучения (сканирующие аппараты: рентгеновский компьютерный томограф, стоматологический аппарат для панорамных снимков и др.) значение N принимается равным 0,1.

Таблица 10.2

и анодное напряжение U для расчета __стационарной защиты рентгеновских кабинетов_

Рентгеновская аппаратура*

напряжение,

Флюорографический аппарат с люминесцентным экраном и оптическим переносом изображения, пленочный или цифровой

Флюорографический аппарат со сканирующей линейкой

Флюорографический малодозо- вый аппарат с УРИ, ПЗС- матрицей и цифровой обработкой изображения

Рентгенодиагностический аппарат общего назначения, пленочный или цифровой

Рентгеновские аппараты для интервенционных процедур (ангиографические, хирургические)

Рентгеновский компьютерный томограф

Хирургический передвижной аппарат с УРИ

Палатный рентгеновский аппарат

Рентгеноурологический аппарат

Рентгеновский аппарат для литот- рипсии

Рентгеновская аппаратура*

напряжение,

Маммографический аппарат пленочный или цифровой

Маммографический аппарат с цифровым приемником изображения, сканирующий

Рентгеновский аппарат для планирования лучевой терапии (симулятор)

Аппарат для близкодистанционной рентгенотерапии

Аппарат для дальнедистанционной рентгенотерапии

Остеоденситометр для всего тела

Номинальное

Стоматологический аппарат для прицельных снимков пленочный

Стоматологический аппарат для прицельных снимков высокочувствительный пленочный или цифровой

Стоматологический аппарат для панорамных снимков пленочный или цифровой

Стоматологический рентгеновский компьютерный томограф

Микрофокусный рентгеновский аппарат с максимальным анодным током не более 0,1 мА

Примечания: *Для аппаратов, не вошедших в табл. 11.2, а также при нестандартном применении перечисленных типов аппаратов W рассчитывается по значению фактической экспозиции при стандартизированных значениях анодного напряжения. Для рентгеновских аппаратов, в которых максимальное анодное напряжение ниже указанного в табл. 11.2, при расчетах и измерениях необходимо использовать максимальное напряжение, указанное в технической документации на аппарат.

Расстояние от фокуса рентгеновской трубки до точки расчета определяется по проектной документации на рентгеновский кабинет. За точки расчета защиты принимаются точки, расположенные на высоте 1 м в защищаемом помещении: над и под процедурной - в точках прямоугольной сетки с шагом 1-2 м; смежно по горизонтали - на расстоянии 10 см от стены по всей длине стены с шагом 1-2 м.

На территории учреждения за точки расчета принимают точки, расположенные на расстоянии 10 см от наружной стены помещения процедурной на высоте 1 м, а при наличии окон - до 2 м от основания здания.

При расчете радиационной защиты рентгеновского стоматологического кабинета, расположенного смежно с жилыми помещениями, за точки расчета защиты принимаются точки, расположенные: вплотную к внутренним поверхностям стен кабинета, размещенного смежно по горизонтали с жилыми помещениями; на уровне пола кабинета при расположении жилого помещения под кабинетом; на уровне потолка кабинета при расположении жилого помещения над кабинетом.

На основании рассчитанных значений кратности ослабления

^ определяют необходимые значения свинцовых эквивалентов элементов стационарной защиты. В табл.1 приложения 3 представлены значения свинцовых эквивалентов в зависимости от значения кратности ослабления в диапазоне напряжений на рентгеновской трубке от 50 до 250 кВ.

Средства защиты, поставляемые в виде готовых изделий (защитные двери, защитные смотровые окна, ширмы, ставни, жалюзи и др.), должны обеспечивать кратность ослабления излучения, предусмотренную расчетом защиты, содержащимся в технологической части проекта рентгеновского кабинета.

Для изготовления стационарной защиты могут быть использованы материалы, обладающие необходимыми конструкционными и защитными характеристиками, отвечающие санитарно-гигиеническим требованиям. Защитные характеристики (свинцовые эквиваленты) основных строительных и специальных защитных материалов приведены в табл. 2-5 приложения 3 . При применении материалов, не перечисленных в табл. 2-5 приложения 3 , необходимо иметь документы, подтверждающие их защитные свойства или должны быть определены защитные характеристики в аккредитованных организациях с использованием контрольных образцов.

Расчет защиты для двух или более рентгеновских аппаратов, установленных в одной процедурной, должен проводиться по суммарной рабочей нагрузке от всех аппаратов. Необходимая толщина защитных ограждений выбирается, исходя из максимальных рассчитанных значений кратности ослабления. Эти же требования предъявляются при расчете защиты комнаты управления, смежной с двумя процедурными помещениями.

В процедурной рентгеновского кабинета, где пол расположен непосредственно над грунтом или потолок находится непосредственно под крышей (если она не используется), защита от излучения в этих направлениях не предусматривается.

Коммуникации через стены и перекрытия помещений рентгеновских кабинетов (воздуховод, водопровод, электрический кабель) должны быть оснащены защитой, обеспечивающей безопасность персонала. Коммуникации рекомендуется размещать вне зоны прямого пучка излучения.

к практическому занятию "Основные способы защиты от вредностей в рентгеновских кабинетах"

В основу пособия положены "ОБЩЕСОЮЗНЫЕ САНИТАРНО-ГИГЕНИЧЕСКИЕ ПРАВИЛА-И НОРМЫ - СанПид 42-129-11-4О90-86" ,МЗ СССР (1986) "Рентгенологические отделения. Санитарно-гигиенические нормы". (Действующие на территории Украины с 1986г.)

РЕНТГЕНОВСКИЕ ЛУЧИ - не видимые глазом электро-магнитные лучи

(излучение) с длиной волны от 10-5 до 10-2 нм.

Открыты в I895г В. РЕНТГЕНОМ.

:Источник(генератор) рентгеновского излучения - РЕНТГЕНОВСКАЯ ТРУБКА

РЕНТГЕНОВСКАЯ ТРУБКА - электровакуумный прибор для получения рентгеновских лучей. Простейший вариант - стеклянный баллон с впаянными электродами:

КАТОДОМ(-):тугоплавкаянить(нити)
из вольфрама в виде спирали

и АНОДОМ(+):массивный медный чехол, обращенный к катоду скошенным концом(торцом),в толщу которого впаяна вольфрамовая - пластинка толщиной 2-2,5 мм(зеркало анода) являющаяся мишенью, куда
фокусируется поток электронов с катода, т. е. анод-это рентгенооптический фокус трубки. Под действием тока высокого напряжения, электроны испускаемые ка­тодом ускоряются, проходят в безвоздушном пространстве между электродами и бомбардируют анод - "тормозятся" об анод. При этом энергия электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается) и лишь незначительная часть (около 1% при напряжении близко к 100кв) превращается в энергию тормозного рентгеновского излучения.

РЕНТГЕНОВСКИЕ лучи имеют двойственные свойства (с одной стороны - это электромагнитное излучение со всеми свойствами ему присущими, с другой - это излучение обладает эффектом ионизации).

СВОЙСТВА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ КАК ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ :

а)прямолинейное распространение в среде

б)рассеяние в среде по закону пропорциональности квадрату расстояния в)ослабление в среде с учетом слоя половинного ослабления

г)отражение от поверхностей по закону «угол падения равен углу отражения»

(Выше перечисленные свойства рентген. излучения используются при защите)

СВОЙСТВА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ КАК РАЗНОВИДНОСТИ ИОНИЗИРУЮЩЕГО (РАДИОАКТИВНОГО)ИЗЛУЧЕНИЯ:

а) ионизация среды(используется в дозиметрии) б)фотографическое действие. Используется в рентгенографии)

в) люминесцентное - действие (используется в рентгеноскопии)

г) биологическое действие (влияние на рост и развитие клеток живого организма, в первую очередь - молодых, незрелых, - что использу­ется в рентгеноскопии).

РЕНГЕНОВСКИЙ АППАРАТ - это совокупность оборудования, предназначенного для получения и использования (с диагностической или лечебной целью) рентгеновского излучения.

В Украине с I962 г. используются только ЗАКРЫТЫЕ рентгеновские аппараты (закрытый рентгенаппарат - аппарат, все части которого, находящиеся под высоким напряжением относительно земли, окружены защитными оболочками, .защищающими от случайного соприкосновения с частями находящимися под током).

РЕНГЕНОВСКИЙ КАБИНЕТ : совокупность помещений, где располагается рентгеновский аппарат и вспомогательное оборудование, предназначенное для рентгенологического исследования или лечения.

В зависимости от характеристики работы, проводимой в рентгенкабинетах и от типа рентгеновского аппарата, - рентгеновские кабинеты делятся на:

1) рентгенодиагностические

2)рентгенофлюорографические

3)рентгенотерапевтические

Существует 3 варианта размещения рентгеновских кабинетов в лечебных

учреждениях:

1)централизованный (в виде единого комплекса, т. е. рентгеновского отделения

3.3.Рентгеновские отделения (кабинеты) не должны размещаться в

подвальном и цокольном этажах (при расположении пола цокольного этажа ниже планировочной отметки тротуара более чем на 0,5 м

3.4. Высота рентгеновского кабинета должна быть не менее 3 м. Высота кабинета с нестандартной аппаратурой должна устанавливаться в зависимости от размера последней

3.5..Отношение ширины и глубины процедурной рентгеновских кабинетов

не должно превышать 1:1,5 (1,5:1)

3.6.Ширина полотна дверей в процедурной рентгеновских кабинетов

должна составлять не менее 1,2м.

3.7.При расположении кабинетов выше первого этажа и расстоянии до соседних зданий более 50м допускается отсутствие радиационной защиты -(ставень) на окнах процедурной.

3.8.Hабор и площадь помещений рентгеновских кабинетов и отделений должны быть

НЕ МЕНЕЕ:

Наименование помещений площадь, не менее

1.РЕНТГЕНОДИАГНОСТИЧЕСКИЙ КАБИНЕТ

для общих исследований:

Процедурная с поворотным столом-штативом 34_м2

Процедурная с поворотным столом-штативом, с

рентгенокимографом или рентгенополярографом 45 м2 процедурная со столом снимков с приставкой

для томографии 24 м2

Комната управления 10 м2

Фотолаборатория на один кабинет 10 м2

Фотолаборатория на два кабинета 12 м2

Комната врача на один кабинет 10 м2

Комната врача на два кабинета14 м2

Туалет для пациентов (в кабинетах для
исследования желудочно-кишечного тракта) 1,6 1,1 м2

2. РЕНТГЕНОФЛЮОРОГРАФИЧЕСКИЙ КАБИНЕТ :

Процедурная 20 м2

Раздевалка (в кабинете для массовых обследований) 15 м2

Комната для ожидания (в кабинете для массовых

обследований) 16 м2

Фотолаборатория 10м2

3.КАБИНЕТЫ РЕНТГЕНТЕРАПИИ

Процедурная 24 м2

Комната управления 15 м2

Комната врача (смотровая) 10 м2

ПРИМЕЧАНИЕ: в виде исключения допускается функционирование рент­геновских кабинетов без комнат управления и при площади помещений ниже требуемой до 20%

ПРИМЕЧАНИЕ: наличие в воздухе кабинетов озона и окислов азота в норме быть не должно.

III. ЗАЩИТА ОТ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ: Рентгеновское излучение делится на:

а) первичное (прямое) излучение - возникает на аноде рентген - трубки (прямой рабочий пучек+неиспользованное излучением).Действию прямого излучения подвергается ПАЦИЕНТ!

б) вторичное (рассеянное) излучение - в веществе или вне его, возникает
в результате преобразования рассеяния веществом первичного излучения
(подвергается персонал).

Одной из основных мер защиты персонала является установления для персонала ПДД излучения, согласно требованиям НОРМ радиоционной безопасности (НРБ) - 76).

ДОЗОЙ рентгеновского излучения называется мера излучения, основанная на его ИОНИЗИРУЮЩЕЙ СПОСОБНОСТИ. Единица дозы - рентген.

Рентген - это доза излучения, при которой в 1см3 ВОЗДУХА при нормальных условиях (при 0°С и давлении 760 мм рт. ст.) образуется около 2 млдр. пар ионов с зарядом в одну электростатическую единицу.

(При измерении дозы, основной на эффекте ИОНИЗАЦИИ ЖИВОГО организма - речь идет о БЭРе: биологическом эквиваленте рентгена)

ПРЕДЕЛЬНО ДОПУСТИМАЯ ДОЗА ИЗЛУЧЕНИЯ – наибольшая доза (уровень), эффективное действие которой на организм не вызывает отрицательного воздействия на потомство, в свете современных научных данных. (Время действия - в течении всей жизни, или в течение 50 лет (50 лет – максимальный профессиональный стаж).

При эксплуатации рентгеновских кабинетов должны использоваться предельно допустимые уровни (ПДУ) излучения, согласно СанПиН - 86:

Уровни излучения (а также ПДУ) устанавливаются на ВНЕШНЕЙ ПОВЕРХНОСТИ ЗАЩИТЫ для фактического расстояния от рентгеновской трубки до этой поверхности.

- Согласно НРБ - 76 для персонала (категория А) установленны ПДД:

не более: 5 бэр в год

0,1 бэр в неделю 0,17 бэр в день

А. ЗАЩИТА ОТ ПЕРВИЧНОГО (ПРЯМОГО) РЕНТГЕНОВСКОГ
ИЗЛУЧЕНИЯ:

Создание однородного пучка излучения (фильтрация «мягких»
лучей (- с помощью фильтра

Создание узкого пучка (диафрагма, тубус)

Односторонняя направленность рабочего пучка

Сокращение времени работы под лучом (хорошая темновая
адаптация при скопии)

Соблюдение кожно - фокусного расстояния при терапии

Б. ЗАЩИТА ОТ ВТОРИЧНОГО (РАССЕЯНОГО) РЕНТГЕНОВСКОГО
ИЗЛУЧЕНИЯ:

Защитное стекло на экране

Защитные ширмы: большая защитная ширма на рабочем месте
врача, малая ширма - на р. месте лаборанта

Двулопастный резиновый фартук под экраном, для защиты врача

Защитная одежда врача: нагрудный фартук, юбка, перчатки и
шапочка (все из просвинцованной резины)

Добавление в побелочный материал сернокислого бария (для
поглощения вторичного излучения)

Запрещение облицовки стен плиткой (угол падения равен углу
отражения!), с той же целью - не допускаются панели, тем больше
отражение!

Защитные перегородки: барьер, стена, смотровое окно

В зависимости от этого, диагностика или терапия, - кроме экранов,
- остальные три вида классической защиты: количеством,
расстоянием, временем

Правильная планировка кабинета (отделения) - согласно
специальным проектам, а не в приспособленных помещениях!

В. ЗАЩИТА ПАЦИЕНТОВ В ОЖИДАЮЩИХ рентгенологических
исследований:

Защита пациента: меры, направленные на то, чтобы доза
облучения, получаемая пациентом, была снижена до минимального
уровня, при котором возможно успешное рентгенологическое
исследование.

а) защитные барьеры рентгенаппаратов и между местом ожидания

б) устройство защитных кабин для ожидающих

в) нахождение в процедурной не более одного пациента

г) хорошая темновая адаптация врача при скопии

д) кожно - фокусное расстояние: не менее 25 см при рентгеноскопии и не
менее 12,5 см при детальных исследованиях

е) при диагностике - ограничение облучаемых полей с помощью тубусов,
диафрагм

ж) экранирование просвинцованными приспособлениями частей тела
пациента, которые не являются объектом исследования и, прежде всего -
половых органов

з) защитные приспособления для лиц, которые привлекаются для
поддержки пациентов во время рентгеноисследований

Г. ЗАЩИТА ЛЮДЕЙ, НАХОДЯЩИХСЯ В СМЕЖНЫХ ПОМЕЩЕНИЯХ:

Учитываются защитные свойства стен, перегородок, перекрытия
между рентгенкабинетом и снежными помещениями

Рядом и выше не должно быть помещений, где живут, работают
или находятся на излечении (больничные палаты) люди

Учитываются защитные свойства дверей и окон рентгенкабинетов

Использование защитных дверей, смотровых окон и защитных
ставень

Защитная планировка рентгенкабинета (специальный проект, а не
приспособленные помещения!)

Работа с рентгеновским излучением без надлежащей защиты вредна для здоровья. Результатом продолжительного воздействия рентгеновского излучения на человеческое тело являются обнаруживаемые лишь в последствии ожоги кожи, изменения в составе крови и повреждения внутренних органов. Поэтому при работе с рентгеновскими аппаратами необходима защита персонала от прямого и косвенного облучения рентгеновскими лучами.Все работники радиологических отделений и кабинетов, лица, находящихся в смежных помещениях, а также пациенты подвергающиеся исследованию или лечению, должны быть надежно защищены от вредного действия излучений. Защитой называется совокупность устройств и мероприятий, предназначенных для снижения физической дозы излучения, воздействующей на человека, ниже предельно допустимой дозы.Исходными факторами при построении защиты является установленная медицинской практикой предельно допустимая доза или условно безвредная доза. Принято полагать, что при облучении рентгеновским или гамма-излучением ПДД равна 0,05 рентгена в день.

Кроме того, биологическое действие рентгеновского излучения зависит от того, какие участки тела человека подвергаются облучению. При защите особо чувствительных к воздействию рентгеновского излучения органов тела значение мощности дозы в 0,05 р/день считается максимально допустимым и его следует снижать. Напротив, при облучении небольших участков кожного покрова оно является минимальным и может быть даже несколько увеличено.

Защита от вредного действия рентгеновского излучения сводится к ослаблению интенсивности излучения трубки до указанного значения путем увеличения расстояния от фокуса трубки, а также помещением между трубкой и защищаемым объектом поглощающих экранов (стенок). Для уменьшения рассеянного излучения защиту размещают возможно ближе к рентгеновской трубке.

Однако, так как вторичное рассеянное излучение всегда неизбежно возникает при попадании первичного излучения на облучаемый (исследуемый) объект и на окружающие предметы, то кроме защиты от первичных лучей необходима защита и от вторичного рассеянного излучения.

Кроме свинца в качестве защитных материалов используется свинцовое стекло, просвинцованная резина, железо (сталь) и строительные материалы: кирпич, бетон, баритобетон, а иногда и вода.

Защитные свойства этих материалов принято характеризовать «свинцовым эквивалентом А», под которым понимается «выраженная в миллиметрах толщина свинца, ослабляющая мощность физической дозы в воздухе в той же мере, как и данный образец защитного устройства. Часто защитные материалы характеризуются обратной величиной «линейным эквивалентом миллиметра свинца», который означает выраженную в миллиметрах толщину защитного слоя, действие которого эквивалентно слою свинца толщиною в 1 мм (на это число следует умножить толщину необходимого свинцового слоя, чтобы получить толщину защитного слоя из данного материала).



При жестком излучении ослабление определяется главным образом, зависящим в первом приближении только от плотности вещества (р).Таким образом, при жестком излучении (выше 500-800 кв) преимущество свинца резко снижается.Защитные свойства свинцового стекла и свинцовой резины приблизительно пропорциональны содержанию свинца (плотности стекла).Защитные свойства различных материалов удобно характеризовать слоем десятикратного ослабления, т.е. толщиною слоя вещества, после прохождения, которого интенсивность излучения ослабляется в 10 раз. Эта характеристика значительно облегчает расчеты защиты. Например, для ослабления излучения в 100 раз необходимо взять толщину защитного вещества, равную двум слоям десятикратного ослабления. Очевидно, п слоев десятикратного ослабления снизит интенсивность излучения в 10й раз.Защита от рентгеновского излучения в широко распространенных диагностических и терапевтических установках, работающих при напряжениях ниже 110 кв, достигается применением защитных трубок. При этом необходимо следить за тем, чтобы необходимый для исследования первичный пучок лучей после прохождения через исследуемое тело полностью поглощался защитным материалом. В качестве защитного слоя достаточно пластин металлического свинца толщиною 2 мм или эквивалентного слоя какого-либо другого защитного вещества, например свинцовой резины толщиною 6 мм, свинцового высокопроцентного стекла (до 60-70 % свинца) толщиною 8-10 мм или баритового бетона толщиною около 30 мм (состав: 80 % по весу барита BaSO4 и 20 % цемента).В терапевтических рентгеновских аппаратах, работающих при напряжениях до 200-220 кв, защита более совершенна, так как жесткие рентгеновские лучи, попадая на другие тела, например на потолок, стены и т.п., вызывают вторичное рассеянное излучение, которое действует на работающий в этом помещении персонал. Поэтому работающие с установками этого типа защищены не только от непосредственного попадания лучей, исходящих из фокуса трубки, но также и от вторичных лучей, распространяющихся по всем направлениям.Трубка заключена в защитный кожух, покрытый металлическим свинцом толщиною 5 мм (безопасные или защитные трубки). Одновременно предусмотрена защита и от используемого для исследования пучка лучей. Персонал должен находится в соседнем помещении, отделенном защитной стенкой достаточной толщины, или должна быть сооружена защитная кабина, со всех сторон покрытая свинцом толщиною 5 мм или слоем других материатов соответствующей толщины: свинцовой резиной толщиною 15 мм, свинцового стекла (около 70 % свинца) толщиною 20-25 мм и баритового бетона толщиною 70 мм.Рентгеновские установки на более высокие напряжения помещаются в специальном помещении, огражденном со всех сторон защитными стенами, толщина которых соответствует нормам защиты.Проверка надежности защиты, производится фотодозиметрами (фотопленкой в конвертах из черной бумаги), размещенными в различных местах помещения на одну-две недели, а затем по степени зачернения пленки после проявления судят о рассеянных рентгеновских лучах в данном месте.Более точным является контроль защиты с помощью универсального дозиметра для гамма- и рентгеновского излучения (ГРИ) с набором сменных ионизационных камер, устанавливаемых в местах контроля и измеряющих макро- и микродозы.При проверке отсутствия щелей или повреждений в защитных стенах, ширмах, щитах пользуются ионизационными камерами малого объема, так как в противном случае интенсивный узкий пучок, проникающий через щель, будет ионизировать только часть объема воздуха в большой камере и следовательно, показания дозиметра будут неправильными (преуменьшенными). Важной является также защита от действия вредных для организма газов (озон и азотные соединения), которые образуются при работе рентгеновской установки в искровых промежутках и на остриях высоковольтной проводки. Удаление этих газов из помещения рентгеновских аппаратов осуществляется вытяжной вентиляцией. Ввиду того, что эти газы тяжелее воздуха, вытяжные каналы размещены не под потолком, а невысоко над уровнем пола.



Основными устройствами защиты от вредною для здоровья рентгеновского излучения являются стационарные и нестационарные. Стационарные - стены, перекрытия, защитные двери, смотровые окна, стенки для местной защиты обеспечивают защиту от прямого и рассеянного излучения. Исходя из мощности рентгеновских установок и активности радиоактивных веществ, рассчитывают толщину всех защитных устройств. В частности, для изготовления стен применяют кирпич, бетон, бариго-бетон, баритовую штукатурку. Барит содержит барий и поэтому в значительной степени поглощает ионизирующее излучение. Двери в радиологические кабинеты обивают листовым свинцом или делают из металла. В смотровые окна вставляют просвинцованное стекло значительной толщины. Нестационарными устройствами называют перемещаемые приспособления, предназначенные для защиты персонала и больных, находящихся в тех же помещениях, где расположены источники излучений.

К числу нестационарных устройству, принадлежат различные ширмы. Они изготавливаются из материала, поглощающего излучение, и устанавливаются в радиологических кабинетах таким образом, чтобы предохранить работников и больных от действия излучения.Высокими защитными ширмами огорожены рабочие места лаборантов в рентгенодиагностических кабинетах. Малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических кабинетах малая защитная ширма отделяет врача-рентгенолога от пациента, которого он исследует.Рентгеновские трубки в аппаратах защищены металлическими кожухами различных размеров и толщины. В рентгенодиагностических и рентгенотерапевтических аппаратах перед выходным окном трубок установлены медные пластины фильтры для фильтрации рентгеновских лучей малой интенсивности, Перед выходным окном рентгеновской трубки в терапевтических аппаратах укреплены тубусы, ограничивающие пучок излучения. В диагностических аппаратах в основании тубуса укреплена створчатая диафрагма, состоящая из подвижных створок, с помощью которых врач-рентгенолог дистанционным управлением формирует рабочий пучок излучения до требуемой величины.К числу нестационарных защитных устройств принадлежат приспособления индивидуальной защиты: фартуки из просвинцованной резины, защитные юбочки, перчатки, шапочки.Участки тела пациента, которые не должны подвергаться облучению, покрывают листами из просвинцованной резины или специальными свинцовыми пластинами. Персонал радиологического отделения обеспечивается одеждой, состоящей из халата, пластикового фартука с нагрудником, пластиковых нарукавников, резиновых перчаток, тапочек, бахил и галош, очков или щитков из органического стекла, респираторов.Все эти предметы предназначены для защиты от попадания на поверхность тела или внутрь организма радиоактивных веществ. Работа с радиоактивными препаратами производится на специальных столах за защитными ширмами, свинцовыми экранами с использованием контейнеров и дистанционного инструмента. При работе с жидкими изотопами применяются автоматические и механические приспособления для разлива и забора препаратов (специальные шприцы, пипетки).Существенным фактором лучевой безопасности является рациональное расположение рабочих мест персонала с максимально возможным удалением их от источников излучения - это так называемая защита расстоянием. Защита расстоянием очень действенна, поскольку интенсивность облучения убывает обратно пропорционально квадрату расстояния от источника до облучаемой поверхности. Поэтому мощные источники излучения - гамма-установки, линейные ускорители, бетатроны - принято устанавливать в больших помещениях и в отдалении от стен. При планировке рентгенодиагностических кабинетов также всегда ставят целью максимальное удаление места работы врача-рентгенолога и лаборанта от точек наивысшего уровня радиации. Весьма важным фактором снижения радиационной нагрузки является максимальное сокращение времени пребывания персонала и больных в сфере действия ионизирующих излучений. Для сотрудников радиологических отделений установлен четырех-шестичасовой рабочий день и дополнительный отпуск.

IV.Заключение

Собрав весь нужный материал, и проделав самостоятельную работу, выполнили все поставленные задачи и ответили на поставленные вопросы. Мы узнали, что такое рентгеновское излучение, узнали о его видах, о характере данного излучения, также в ходе работы узнали о том, в каких целях применяется рентгеновское излучение в медицине, т.к. каждый будущий врач должен обладать этими знаниями.

V.Список использованной литературы

МЕРЫ ЗАЩИТЫ ОТ ДЕЙСТВИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Рентгеновские аппараты

www.medical-enc.ru

http://www.all-fizika.com/article/index.php?id_article=1983

www.all-fizika.com

Рентгеновские трубки

Характеристическое рентгеновское излучение

Повреждающеедействие на организм человека ионизирующих излучений вызывает необходимость защиты от него как персонала рентгеновских кабинетов, так и пациентов при рентгенодиагностике. Уровень безопасного воздействия излучения на организм человека напрямую связан с понятием предельно допустимых доз облучения (ПДД). ПДД - это наибольшее значение индивидуальной дозы, полученной при облучении за год, которая при равномерном воздействии в течение 50 лет не вызывает у человека каких-нибудь патологических изменений. Различают ПДД для 3 группы радиочувствительных органов:

1 группа - ПДД – 5 бэр в год – все тело, половые органы, красный костный мозг.

2 группа - ПДД – 15 бэр в год – мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, ЖКТ, легкие, хрусталик глаза.

3 группа - ПДД – 30 бэр в год – кожа, костная ткань, кисти, предплечья, лодыжки, стопы.

Способы защиты от рентгеновского излучения:

1. Защита экранированием:

а) стационарные средства: баритовая штукатурка стен кабинетов, двери с листовым свинцовым покрытием, просвинцованное стекло в смотровых окнах;

б) передвижные: защитные ширмы, так же с листовым свинцовым покрытием;

в) индивидуальные средства: фартуки, перчатки, колпаки и бахилы из просвинцованной резины для персонала и покрытие из просвинцованной резины для защиты наиболее чувствительных тканей пациента во время проведения различных методов диагностики.

2. Защита расстоянием – расположение рабочих мест персонала с максимальным удалением их от источника излучения, максимально возможное расстояние между рентгеновской трубкой и кожей пациента (кожно-фокусное расстояние). При увеличении этого расстояния вдвое, доза поглощённой радиации уменьшается в четыре раза.

3. Защита временем - сокращение времени облучения снижает поглощённую суммарную дозу. В связи с этим существует строгая регламентация рабочего времени дня рентгенолога и время проведения рентгендиагностических процедур. Так при рентгенографии экспозиция длится в среднем до 1-3 секунд, при рентгеноскопии грудной клетки – до 5 минут, а при рентгеноскопии желудка - до 10 минут.

Основными принципами радиационной защиты пациентов являются:

Проведение исследований по строгим показаниям;

Исключение дублирующих друг друга повторных исследований;

Высокая квалификация персонала, проводящего исследования;

Использование исправного диагностического оборудования;

Применение индивидуальных средств защиты для участков тела, находящихся вне зоны облучения (гонады, щитовидная железа, молочная железа, хрусталик);

Правильное позиционирование пациентов, ограничение зоны облучения и времени воздействия излучения.

Контроль лучевой нагрузки пациента по индивидуальной дозиметрии.

Доза излучения должна быть достаточной для получения качественных изображений.

Уровни облучения персонала отделений лучевой диагностики не должны превышать 20 мЗв в год. Для людей, находящихся рядом с кабинетами лучевой диагностики или оказывающими помощь при исследованиях, доза облучения не должна превышать 5 мЗв в год.

На персонал, работающий в отделениях лучевой диагностики, чаще воздействует вторичное излучение, которое образуется в связи с рассеянием прямого пучка, проходящего через тело пациента, и элементы конструкции оборудования. Интенсивность вторичного излучения в 100-1000 раз меньше, чем первичного, но оно распространяется во всех направлениях. Защита персонала отделений лучевой диагностики, обеспечивается следующими факторами:

Использованием средств радиационной защиты (ширмы, экраны, очки, перчатки, фартуки и пр.);

Специальной планировкой и защитой кабинетов рентгенодиагностики и пультовых;

Постоянным обучением персонала правилам и принципам радиационной безопасности;

Допуск к работе только сертифицированных врачей-радиологов и рентгенолаборантов;

Проведение регулярного радиационного и дозиметрического контроля.

Ультразвуковой метод исследования

Ультразвуковой метод диагностики - это способ получения изображения органов на основе регистрации и компьютерного анализа отражённых от биологических структур ультразвуковых волн. Ультразвук – это звуковые колебания выше 20кГц. Физической основой ультразвука является пьезоэлектрический эффект открытый братьями Кюри в 1881 году. В 20-30 года ХХ века С.Я. Соколов разработал и внедрил ультразвуковую промышленную дефектоскопию. В это же время были первые попытки использования УЗИ в медицине, но наиболее широко данный метод стал использоваться в 60 годы за рубежом и с 70-80 – х годов в России.

Сущность пьезоэлектрического эффекта заключается в том, что при деформации монокристаллов некоторых химических соединений (кварц, титанат бария, сернистый кадмий) под действием ультразвуковых волн на их поверхности возникают противоположные по знаку электрические заряды. И, наоборот, при подаче на эти кристаллы электрического тока в них возникают механические колебания с излучением ультразвуковых волн. Таким образом, пьезоэлемент может одновременно играть роль источника и служить приёмником ультразвуковых волн. Эту часть аппарата УЗИ называют акустическим преобразователем, трансдюсером или датчиком. Высокочастотные колебания обладают более высокой разрешающей способностью. В медицине используют частоты 2-10 МГц. При этом разрешающая способность УЗИ составляет 1-3 мм.

Любая ткань препятствует распространению ультразвука, то есть обладают различным акустическим сопротивлением (импедансом). При распространении ультразвука в неоднородных тканях на границе двух сред одна часть волн продолжает своё движение и постепенно поглощается тканями, а другая часть волн отражается. Чем выше плотность ткани, тем больше волн отражается, а на экране дисплея появляется более интенсивная и яркая белая картинка. Полным отражателем является граница между тканями и воздухом. Поверхностно расположенные структуры исследуют с частотой 7,5 МГц и выше, а глубоко расположенные структуры исследуют с частотой 3,5 МГц.

Методики УЗИ

1. УЗИ в В-режиме – это получение информации в виде двухмерных серошкальных томографических изображений анатомических структур в масштабе реального времени. Биологические структуры отличают по их эхогенности. Анэхогенные образования (заполнены жидкостью) выглядят на экране чёрными, гипоэхогенные (ткани с высокой гидрофильностью) серо-чёрные. Эхопозитивным является большинство тканей, и они дают серый цвет. Ткани с повышенной эхогенностью (плотные ткани) выглядят на экране светло серыми. А гиперэхогенные объекты полностью отражают ультразвук и на экране выглядят белыми при этом вслед за ними появляется тёиная дорожка (акустическая тень). Современные аппараты УЗИ выводят на экран множество изображений, каждое из которых длится сотую долю секунды, что позволяет получить меняющееся изображение органа в реальном масштабе времени.

2. УЗИ в М-режиме – это одномерное эхоскопическое изображение органа. Получаемое изображение отражает изменение положения части органа во времени. Чаще всего такой режим используют при эхографии сердца и его клапанов.

3. Допплерография - методика, основанная на эффекте Доплера, сущность которого состоит в том, что при движении объекта в сторону датчика частота сигнала увеличивается, а при удалении от источника - уменьшается. Виды допплерографии:

а) потоковая спектральная допплерография – оценка кровотока в крупных сосудах и камерах сердца, запись которого представляет собой спектрограмму,

б) цветное допплеровское картирование – позволяет определить направление тока крови в сосуде (красный - к датчику, а синий - от датчика).

в) энергетическая допплерография –позволяет оценить плотность эритроцитов в заданном объёме ткани и дифференцировать кровоснабжаемые и некровоснабжаемые ткани.

г) конвергентная цветовая допплерография – сочетание методики цветного допплеровского картирования и энергетического допплера (б+в).

д) дуплексное исследование – сочетание УЗИ в В-режиме, с потоковым и энергетическим цветовым картированием.

е) трёхмерное допплеровское картирование и трёхмерная энергетическая допплерография – это методики, дающие возможность наблюдать объёмную картину пространственного расположения кровеносных сосудов в режиме реального времени.

4. Эхоконтрастные методы УЗ-исследования. Эта методика основана на внутривенном введении ультразвукового контраста, включающего свободные микропузырьки газа диаметром менее 5 мм и сохраняющих стабильность в системном кровотоке более 5 минут.

5. Эндоскопическое УЗИ. Данный метод УЗИ позволяет определить эхоструктуру объёмных образований или стенки полого органа в ходе эндоскопического исследования. Методика позволяет оценить степень прорастания опухоли в стенку органа.

6. Интракорпоральное УЗИ – трансректальное, трансвагианльное, трасэзофагеально, трансуретрально и т.д.

Клиническое использование УЗИ: плановые исследования паренхиматозных органов, неотложная диагностика травм и заболеваний брюшной полости, патология сердца, гнойные заболевания мягких тканей и полостей организма, мониторинг состояния того или иного органа в процессе лечения и после операции, интраоперационная диагностика патологии и степени распространённости процесса, исследование суставов, позвоночного столба, допплерография магистральных и интракраниальных сосудов, артерий и вен среднего калибра. Методики УЗИ широко используется в акушерстве и гинекологии для пренатальной диагностики врождённых аномалий и патологии плода, а также для диагностики заболеваний и опухолей женской половой сферы.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)
Предусматривается
использование
каталки
Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;



Понравилась статья? Поделитесь ей
Наверх