Формулы решение тригонометрических неравенств. Методы решения тригонометрических неравенств

Решение неравенств онлайн на сайте Math24.biz обеспечит максимальную точность в расчетах. Неравенство в математике - утверждение об относительной величине или порядке двух объектов (один из объектов меньше или не больше другого), или о том, что два объекта не одинаковы (отрицание равенства). В элементарной математике изучают числовые неравенства, в общей алгебре, анализе, геометрии рассматриваются неравенства также и между объектами нечисловой природы. Для решения неравенства обязательно должны быть определены обе его части с одним из знаков неравенства между ними. Строгие неравенства подразумевают неравенство двух объектов. В отличие от строгих, нестрогие неравенства допускают равенство входящих в него объектов. Линейные неравенства представляют собой простейшие с точки зрения начала изучения выражения, и для решения таких неравенств используются самые простые методики. Главная ошибка учеников в решении неравенств онлайн в том, что они не различают особенность строгого и нестрогого неравенства, от чего зависит войдут или нет граничные значения в конечный ответ. Несколько неравенств, связанных между собой несколькими неизвестными, называют системой неравенств. Решением неравенств из системы является некая область на плоскости, либо объемная фигура в трехмерном пространстве. Наряду с этим абстрагируются n-мерными пространствами, однако при решении таких неравенств зачастую не обойтись без специальных вычислительных машин. Для каждого неравенства в отдельности нужно найти значения неизвестного на границах области решения. Множество всех решений неравенства и является его ответом. Замена одного неравенства равносильным ему другим неравенством называется равносильным переходом от одного неравенства к другому. Аналогичный подход встречается и в других дисциплинах, потому что помогает привести выражения к стандартному виду. Вы оцените по достоинству все преимущества решение неравенств онлайн на нашем сайте. Неравенство - это выражение, содержащее один из знаков = >. По сути это логическое выражение. Оно может быть либо верным, либо нет - в зависимости от того, что стоит справа и слева в этом неравенстве. Разъяснение смысла неравенства и основные приемы решения неравенств изучаются на разных курсах, а также в школе. Решение любых неравенств онлайн - неравенства с модулем, алгебраические, тригонометрические, трансцендентные неравенства онлайн. Тождественное неравенство, как строгие и нестрогие неравенства, упрощают процесс достижения конечного результата, являются вспомогательным инструментом для разрешения поставленной задачи. Решение любых неравенств и систем неравенств, будь то логарифмические, показательные, тригонометрические или квадратных неравенства, обеспечивается с помощью изначально правильного подхода к этому важному процессу. Решение неравенств онлайн на сайте сайт всегда доступно всем пользователям и абсолютно бесплатно. Решениями неравенства с одной переменной называются значения переменной, которые обращают его в верное числовое выражение. Уравнения и неравенства с модулем: модуль действительного числа - это абсолютная величина этого числа. Стандартный метод решения этих неравенств заключается в возведении обеих частей неравенства в нужную степень. Неравенства – это выражения, указывающие на сравнение чисел, поэтому грамотное решение неравенств обеспечивает точность таких сравнений. Они бывают строгими (больше, меньше) и нестрогими (больше или равно, меньше или равно). Решить неравенство – значит найти все те значения переменных, которые при подстановке в исходное выражение обращают его в верное числовое представление.. Понятие неравенства, его сущность и особенности, классификация и разновидности - вот что определяет специфику данного математического раздела. Основные свойства числовых неравенств, применимые ко всем объектам данного класса, обязательно должны быть изучены учениками на начальном этапе ознакомления с данной темой. Неравенства и промежутки числовой прямой очень тесно связаны, когда речь идет о решении неравенств онлайн. Графическое обозначение решения неравенства наглядно показывает суть такого выражения, становится понятно к чему следует стремиться при решении какой-либо поставленной задачи. В основу понятия неравенства входит сравнение двух или нескольких объектов. Неравенства, содержащие переменную, решаются как аналогично составленные уравнения, после чего делается выборка интервалов, которые будут приняты за ответ. Любое алгебраическое неравенство, тригонометрическое неравенство или неравенства содержащие трансцендентные функции, вы с легкостью и мгновенно сможете решить, используя наш бесплатный сервис. Число является решением неравенства, если при подстановке этого числа вместо переменной получаем верное выражение, то есть знак неравенства показывает истинное понятие.

Большинство студентов тригонометрические неравенства недолюбливают. А зря. Как говаривал один персонаж,

“Вы просто не умеете их готовить”

Так как же “готовить” и с чем подавать неравенство с синусом мы разберёмся в этой статье. Решать мы будем самым простым способом – с помощью единичной окружности.

Итак, перво-наперво нам потребуется следующий алгоритм.

Алгоритм решения неравенств с синусом:

  1. на оси синуса откладываем число $a$ и проводим прямую параллельно оси косинусов до пересечения с окружностью;
  2. точки пересечения этой прямой с окружностью будут закрашенными, если неравенство нестрогое, и не закрашенными, если неравенство строгое;
  3. область решения неравенства будет находится выше прямой и до окружности, если неравенство содержит знак “$>$”, и ниже прямой и до окружности, если неравенство содержит знак “$<$”;
  4. для нахождения точек пересечения, решаем тригонометрическое уравнение $\sin{x}=a$, получаем $x=(-1)^{n}\arcsin{a} + \pi n$;
  5. полагая $n=0$, мы находим первую точку пересечения (она находится или в первой, или в четвёртой четверти);
  6. для нахождения второй точки, смотрим, в каком направлении мы идём по области ко второй точке пересечения: если в положительном направлении, то следует брать $n=1$, а, если в отрицательном, то $n=-1$;
  7. в ответ выписывается промежуток от меньшей точки пересечения $+ 2\pi n$ до большей $+ 2\pi n$.

Ограничение алгоритма

Важно: д анный алгоритм не работает для неравенств вида $\sin{x} > 1; \ \sin{x} \geq 1, \ \sin{x} < -1, \ \sin{x} \leq -1$. В строгом случае эти неравенства не имеют решений, а в нестрогом – решение сводится к решению уравнения $\sin{x} = 1$ или $\sin{x} = -1$.

Частные случаи при решении неравенства с синусом

Важно отметить также следующие случаи, которые гораздо удобнее решить логически, не используя вышеуказанный алгоритм.

Частный случай 1. Решить неравенство:

$\sin{x} \leq 1.$

В силу того, что область значения тригонометрической функции $y=\sin{x}$ не больше по модулю $1$, то левая часть неравенства при любом $x$ из области определения (а область определения синуса – все действительные числа) не больше $1$. А, значит, в ответ мы записываем: $x \in R$.

Следствие:

$\sin{x} \geq -1.$

Частный случай 2. Решить неравенство:

$\sin{x} < 1.$

Применяя аналогичные частному случаю 1 рассуждения, получим, что левая часть неравенства меньше $1$ для всех $x \in R$, кроме точек, являющихся решением уравнения $\sin{x} = 1$. Решая это уравнение, будем иметь:

$x = (-1)^{n}\arcsin{1}+ \pi n = (-1)^{n}\frac{\pi}{2} + \pi n.$

А, значит, в ответ мы записываем: $x \in R \backslash \left\{(-1)^{n}\frac{\pi}{2} + \pi n\right\}$.

Следствие: аналогично решается и неравенство

$\sin{x} > -1.$

Примеры решения неравенств с помощью алгоритма.

Пример 1: Решить неравенство:

$\sin{x} \geq \frac{1}{2}.$

  1. Отметим на оси синусов координату $\frac{1}{2}$.
  2. Проведём прямую параллельно оси косинусов и проходящую через эту точку.
  3. Отметим точки пересечения. Они будут закрашенными, так как неравенство нестрогое.
  4. Знак неравенства $\geq$, а значит закрашиваем область выше прямой, т.е. меньший полукруг.
  5. Находим первую точку пересечения. Для этого неравенство превращаем в равенство и решаем его: $\sin{x}=\frac{1}{2} \ \Rightarrow \ x=(-1)^{n}\arcsin{\frac{1}{2}}+\pi n =(-1)^{n}\frac{\pi}{6} + \pi n$. Полагаем далее $n=0$ и находим первую точку пересечения: $x_{1}=\frac{\pi}{6}$.
  6. Находим вторую точку. Наша область идёт в положительном направлении от первой точки, значит $n$ полагаем равным $1$: $x_{2}=(-1)^{1}\frac{\pi}{6} + \pi \cdot 1 = \pi – \frac{\pi}{6} = \frac{5\pi}{6}$.

Таким образом, решение примет вид:

$x \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right], \ n \in Z.$

Пример 2: Решить неравенство:

$\sin{x} < -\frac{1}{2}$

Отметим на оси синусов координату $- \frac{1}{2}$ и проведём прямую параллельно оси косинусов и проходящую через эту точку. Отметим точки пересечения. Они будут не закрашенными, так как неравенство строгое. Знак неравенства $<$, а, значит, закрашиваем область ниже прямой, т.е. меньший полукруг. Неравенство превращаем в равенство и решаем его:

$\sin{x}=-\frac{1}{2}$

$x=(-1)^{n}\arcsin{\left(-\frac{1}{2}\right)}+ \pi n =(-1)^{n+1}\frac{\pi}{6} + \pi n$.

Полагая далее $n=0$, находим первую точку пересечения: $x_{1}=-\frac{\pi}{6}$. Наша область идёт в отрицательном направлении от первой точки, значит $n$ полагаем равным $-1$: $x_{2}=(-1)^{-1+1}\frac{\pi}{6} + \pi \cdot (-1) = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$.

Итак, решением этого неравенства будет промежуток:

$x \in \left(-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2 \pi n\right), \ n \in Z.$

Пример 3: Решить неравенство:

$1 – 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq 0.$

Этот пример решать сразу с помощью алгоритма нельзя. Для начала его надо преобразовать. Делаем в точности так, как делали бы с уравнением, но не забываем про знак. Деление или умножение на отрицательное число меняет его на противоположный!

Итак, перенесём всё, что не содержит тригонометрическую функцию в правую часть. Получим:

$- 2\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \leq -1.$

Разделим левую и правую часть на $-2$ (не забываем про знак!). Будем иметь:

$\sin{\left(\frac{x}{4}+\frac{\pi}{6}\right)} \geq \frac{1}{2}.$

Опять получилось неравенство, которое мы не можем решить с помощью алгоритма. Но здесь уже достаточно сделать замену переменной:

$t=\frac{x}{4}+\frac{\pi}{6}.$

Получаем тригонометрическое неравенство, которое можно решить с помощью алгоритма:

$\sin{t} \geq \frac{1}{2}.$

Это неравенство было решено в примере 1, поэтому позаимствуем оттуда ответ:

$t \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Однако, решение ещё не закончилось. Нам нужно вернуться к исходной переменной.

$(\frac{x}{4}+\frac{\pi}{6}) \in \left[\frac{\pi}{6} + 2\pi n; \frac{5\pi}{6} + 2 \pi n\right].$

Представим промежуток в виде системы:

$\left\{\begin{array}{c} \frac{x}{4}+\frac{\pi}{6} \geq \frac{\pi}{6} + 2\pi n, \\ \frac{x}{4}+\frac{\pi}{6} \leq \frac{5\pi}{6} + 2 \pi n. \end{array} \right.$

В левых частях системы стоит выражение ($\frac{x}{4}+\frac{\pi}{6}$), которое принадлежит промежутку. За первое неравенство отвечает левая граница промежутка, а за второе – правая. Причём скобки играют немаловажную роль: если скобка квадратная, то неравенство будет нестрогим, а если круглая, то строгим. наша задача получить слева $x$ в обоих неравенствах .

Перенесём $\frac{\pi}{6}$ из левой части в правые, получим:

$\left\{\begin{array}{c} \frac{x}{4} \geq \frac{\pi}{6} + 2\pi n -\frac{\pi}{6}, \\ \frac{x}{4} \leq \frac{5\pi}{6} + 2 \pi n – \frac{\pi}{6}. \end{array} \right.$

Упрощая, будем иметь:

$\left\{\begin{array}{c} \frac{x}{4} \geq 2\pi n, \\ \frac{x}{4} \leq \frac{2\pi}{3} + 2 \pi n. \end{array} \right.$

Умножая левые и правые части на $4$, получим:

$\left\{\begin{array}{c} x \geq 8\pi n, \\ x \leq \frac{8\pi}{3} + 8 \pi n. \end{array} \right.$

Собирая систему в промежуток, получим ответ:

$x \in \left[ 8\pi n; \frac{8\pi}{3} + 8 \pi n\right], \ n \in Z.$

Проект по алгебре «Решение тригонометрических неравенств» Выполнила ученица 10 «Б» класса Казачкова Юлия Руководитель: учитель математики Кочакова Н.Н.

Цель Закрепить материал по теме «Решение тригонометрических неравенств» и создать памятку ученикам для подготовки к предстоящему экзамену.

Задачи Обобщить материал по данной теме. Систематизировать полученную информацию. Рассмотреть данную тему в ЕГЭ.

Актуальность Актуальность выбранной мною темы заключается в том, что задания на тему «Решение тригонометрических неравенств» входят в задания ЕГЭ.

Тригонометрические неравенства Неравенство - это отношение, связывающее два числа или выражения посредством одного из знаков: (больше); ≥ (больше или равно). Тригонометрическое неравенство – это неравенство, содержащее тригонометрические функции.

Тригонометрические неравенства Решение неравенств, содержащих тригонометрические функции, сводится, как правило, к решению простейших неравенств вида: sin x>a, sin xa, cos x a, tg x a, ctg x

Алгоритм решения тригонометрических неравенств На оси, соответствующей заданной тригонометрической функции, отметить данное числовое значение этой функции. Провести через отмеченную точку прямую, пересекающую единичную окружность. Выделить точки пересечения прямой и окружности с учетом строгого или нестрогого знака неравенства. Выделить дугу окружности, на которой расположены решения неравенства. Определить значения углов в начальной и конечной точках дуги окружности. Записать решение неравенства с учетом периодичности заданной тригонометрической функции.

Формулы решения тригонометрических неравенств sinx >a; x (arcsin a + 2πn; π- arcsin a + 2πn). sinx a; x (- arccos a + 2πn; arccos a + 2πn). cosx a; x (arctg a + πn ; + πn). tgx a; x (πn ; arctg + πn). ctgx

Графическое решение основных тригонометрическх неравенств sinx >a

Графическое решение основных тригонометрическх неравенств sinx

Графическое решение основных тригонометрическх неравенств cosx >a

Графическое решение основных тригонометрическх неравенств cosx

Графическое решение основных тригонометрическх неравенств tgx >a

Графическое решение основных тригонометрическх неравенств tgx

Графическое решение основных тригонометрическх неравенств ctgx >a

Графическое решение основных тригонометрическх неравенств ctgx

Способы решения тригонометрических неравенств Решение тригонометрических неравенств с помощью числовой окружности; Решение тригонометрических неравенств с помощью графика функции. :

Решение тригонометрических неравенств с помощью числовой окружности Пример 1: : Ответ:

Решение тригонометрических неравенств с помощью числовой окружности Пример 1: Ответ:

Решение тригонометрических неравенств с помощью графика функции Пример: Ответ:

Итог работы Я закрепила свои знания по теме «Решение тригонометрических неравенств». Систематизировала полученную информацию по данной теме для удобства ее восприятия: вывела алгоритм решения тригонометрических неравенств; обозначила два способа решения; продемонстрировала примеры решений. :

Итог работы Также в качестве готового продукта к моему проекту прилагается «Памятка ученикам при подготовке к экзамену по алгебре». Документ Microsoft Office Word (2). docx:

Используемая литература Учебник по алгебре за 10 класс «Алгебра и начала анализа» под редакцией А.Н.Колмогорова http://festival.1september.ru/articles/514580/ http://www.mathematics-repetition.com http://www.calc.ru http://www.pomochnik-vsem.ru:

На практическом занятии мы повторим основные типы заданий из темы «Тригонометрия», дополнительно разберем задачи повышенной сложности и рассмотрим примеры решения различных тригонометрических неравенств и их систем.

Данный урок поможет Вам подготовиться к одному из типов заданий В5, В7, С1 и С3.

Начнем с повторения основных типов заданий, которые мы рассмотрели в теме «Тригонометрия» и решим несколько нестандартных задач.

Задача №1 . Выполнить перевод углов в радианы и градусы: а) ; б) .

а) Воспользуемся формулой перевода градусов в радианы

Подставим в нее указанное значение .

б) Применим формулу перевода радиан в градусы

Выполним подстановку .

Ответ. а) ; б) .

Задача №2 . Вычислить: а) ; б) .

а) Поскольку угол далеко выходит за рамки табличного, уменьшим его с помощью вычитания периода синуса. Т.к. угол указан в радианах, то и период будем рассматривать как .

б) В данном случае ситуация аналогичная. Поскольку угол указан в градусах, то и период тангенса будем рассматривать как .

Полученный угол хоть и меньше периода, но больше , а это значит, что он относится уже не к основной, а к расширенной части таблицы. Чтобы не тренировать лишний раз свою память запоминанием расширенной таблицы значений тригофункций, вычтем период тангенса еще раз:

Воспользовались нечетностью функции тангенс.

Ответ. а) 1; б) .

Задача №3 . Вычислить , если .

Приведем все выражение к тангенсам, разделив числитель и знаменатель дроби на . При этом, можем не бояться, что , т.к. в таком случае значения тангенса не существовало бы.

Задача №4 . Упростить выражение .

Указанные выражения преобразовываются с помощью формул приведения. Просто они непривычно записаны с использованием градусов. Первое выражение вообще представляет собой число. Упростим все тригофункции по очереди:

Т.к. , то функция меняется на кофункцию, т.е. на котангенс, и угол попадает во вторую четверть, в которой у исходного тангенса знак отрицательный.

По тем же причинам, что и предыдущем выражении, функция меняется на кофункцию, т.е. на котангенс, а угол попадает в первую четверть, в которой у исходного тангенса знак положительный.

Подставим все в упрощаемое выражение:

Задача №5 . Упростить выражение .

Распишем тангенс двойного угла по соответствующей формуле и упростим выражение:

Последнее тождество является одной из формул универсальной замены для косинуса.

Задача №6 . Вычислить .

Главное, это не сделать стандартной ошибки и не дать ответ, что выражение равно . Воспользоваться основным свойством арктангенса нельзя пока возле него присутствует множитель в виде двойки. Чтобы от него избавиться распишем выражение по формуле тангенса двойного угла , при этом относимся к , как к обыкновенному аргументу.

Теперь уже можно применять основное свойство арктангенса, вспомним, что на его численный результат ограничений нет.

Задача №7 . Решить уравнение .

При решении дробного уравнения, которое приравнивается к нулю, всегда указывается, что числитель равен нулю, а знаменатель нет, т.к. на ноль делить нельзя.

Первое уравнение представляет собой частный случай простейшего уравнения, которое решается с помощью тригонометрической окружности. Вспомните самостоятельно этот способ решения. Второе неравенство решается как простейшее уравнение по общей формуле корней тангенса, но только с записью знака неравно.

Как видим, одно семейство корней исключает другое точно такое же по виду семейство не удовлетворяющих уравнению корней. Т.е. корней нет.

Ответ. Корней нет.

Задача №8 . Решить уравнение .

Сразу заметим, что можно вынести общий множитель и проделаем это:

Уравнение свелось к одной из стандартных форм, когда произведение нескольких множителей равно нулю. Мы уже знаем, что в таком случае или один из них равен нулю или другой, или третий. Запишем это в виде совокупности уравнений:

Первые два уравнения являются частными случаями простейших, с подобными уравнениями мы уже многократно встречались, поэтому сразу укажем их решения. Третье уравнение приведем к одной функции с помощью формулы синуса двойного угла.

Решим отдельно последнее уравнение:

Данное уравнение не имеет корней, т.к. значение синуса не могут выходить за пределы .

Таким образом, решением является только два первых семейства корней, их можно объединить в одно, что легко показать на тригонометрической окружности:

Это семейство всех половин , т.е.

Перейдем к решению тригонометрических неравенств. Сначала разберем подход к решению примера без использования формул общих решений, а с помощью тригонометрической окружности.

Задача №9 . Решить неравенство .

Изобразим на тригонометрической окружности вспомогательную линию, соответствующую значению синуса равному , и покажем промежуток углов, удовлетворяющих неравенству.

Очень важно понять, как именно указывать полученный промежуток углов, т.е. что является его началом, а что концом. Началом промежутка будет угол, соответствующей точке, в которую мы войдем в самом начале промежутка, если будем двигаться против часовой стрелки. В нашем случае это точка, которая находится слева, т.к. двигаясь против часовой стрелки и проходя правую точку, мы наоборот выходим из необходимого промежутка углов. Правая точка будет, следовательно, соответствовать концу промежутка.

Теперь необходимо понять значения углов начала и конца нашего промежутка решений неравенства. Типичная ошибка - это указать сразу, что правой точке соответствует угол , левой и дать ответ . Это неверно! Обратите внимание, что мы только что указали промежуток, соответствующий верхней части окружности, хотя нас интересует нижняя, иными словами, мы перепутали начало и конец необходимого нам интервала решений.

Чтобы интервал начинался с угла правой точки, а заканчивался углом левой точки, необходимо, чтобы первый указанный угол был меньше второго. Для этого угол правой точки нам придется отмерять в отрицательном направлении отсчета, т.е. по часовой стрелке и он будет равен . Тогда, начиная движение с него в положительном направлении по часовой стрелке, мы попадем в правую точку уже после левой точки и получим для нее значение угла . Теперь начало промежутка углов меньше конца , и мы можем записать промежуток решений без учета периода:

Учитывая, что такие промежутки будут повторяться бесконечное количество раз после любого целого количества поворотов, получим общее решение с учетом периода синуса :

Круглые скобки ставим из-за того, что неравенство строгое, и точки на окружности, которые соответствуют концам промежутка, мы выкалываем.

Сравните полученный ответ с формулой общего решения, которую мы приводили на лекции.

Ответ..

Указанный способ хорош для понимания того, откуда берутся формулы общих решений простейших тригонеравенств. Кроме того, он полезен для тех, кому лень учить все эти громоздкие формулы. Однако сам по себе способ тоже непростой, выберете, какой подход к решению вам наиболее удобен.

Для решения тригонометрических неравенств можно использовать и графики функций, на которых строится вспомогательная линия аналогично показанному способу с использованием единичной окружности. Если вам интересно, попробуйте самостоятельно разобраться с таким подходом к решению. В дальнейшем будем использовать общие формулы для решения простейших тригонометрических неравенств.

Задача №10 . Решить неравенство .

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

Получаем в нашем случае:

Ответ.

Задача №11 . Решить неравенство .

Воспользуемся формулой общего решения для соответствующего строго неравенства:

Ответ..

Задача №12 . Решить неравенства: а) ; б) .

В указанных неравенствах не надо спешить использовать формулы общих решений или тригонометрическую окружность, достаточно просто вспомнить об области значений синуса и косинуса.

а) Поскольку , то неравенство не имеет смысла. Следовательно, решений нет.

б) Т.к. аналогично , то синус от любого аргумента всегда удовлетворяет указанному в условии неравенству . Следовательно неравенству удовлетворяют все действительные значения аргумента .

Ответ. а) решений нет; б) .

Задача 13 . Решить неравенство .

Простейшие тригонометрические неравенства вида sin x>a — основа для решения более сложных тригонометрических неравенств.

Рассмотрим решение простейших тригонометрических неравенств вида sin x>a на единичной окружности.

1) при 0

С помощью ассоциации косинус-колобок (оба начинаются с ко-, оба «кругленькие»), вспоминаем, что косинус — это x, соответственно, синус — y. Отсюда строим график y=a — прямую, параллельную оси ox. Если неравенство строгое, точки пересечения единичной окружности и прямой y=a выколотые, если неравенство нестрогое — точки закрашиваем (как легко запомнить, когда точка выколотая, когда — закрашенная, смотрите ). Наибольшие затруднение при решении простейших тригонометрических неравенств вызывает правильное нахождение точек пересечения единичной окружности и прямой y=a.

Первую из точек найти несложно — это arcsin a. Определяем путь, по которому из первой точки идем ко второй. На прямой y=a sinx=a, сверху, над прямой, sin x>a, а ниже, под прямой, sin xa, нам нужен верхний путь. Таким образом, от первой точки, arcsin a, ко второй, мы идем против часовой стрелки, то есть в сторону увеличения угла. Мы не доходим до п. На сколько не доходим? На arcsin a. Раз не дошли до п, то вторая точка меньше п, значит, чтобы ее найти, надо из п вычесть arcsina. Решением неравенства sin x>a в этом случае является промежуток от arcsin a до п-arcsin a. Поскольку период синуса равен 2п, чтобы учесть все решения неравенства (а таких промежутков — бесконечное множество), к каждому из концов интервала прибавляем 2пn, где n — целое число (n принадлежит Z).

2) a=0, то есть sin x>0

В этом случае первая точка промежутка — 0, вторая — п. К обоим концам промежутка с учетом периода синуса прибавляем 2пn.

3) при a=-1, то есть sinx>-1

В этом случае первая точка -п/2, а чтобы попасть во вторую, обходим всю окружность против часовой стрелки. Попадаем в точку -п/2+2п=3п/2. Чтобы учесть все интервалы, являющиеся решением данного неравенства, к обоим концам прибавляем 2пn.

4) sinx>-a, при 0

Первая точка — как обычно, arcsin(-a)=-arcsina. Чтобы попасть во вторую точку, идем верхним путем, то есть в сторону увеличения угла.

На этот раз мы за п переходим. На сколько переходим? На arcsin x. Значит, вторая точка — это п+arcsin x. Почему нет минуса? Потому что минус в записи -arcsin a обозначает движение по часовой стрелки, а мы шли против. И в заключении, к каждому концу интервала прибавляем 2пn.

5) sinx>a, если а>1.

Единичная окружность лежит целиком под прямой y=a. Нет ни одной точки выше прямой. Значит, решений нет.

6) sinx>-a, где a>1.

В этом случае вся единичная окружность целиком лежит над прямой y=a. Поэтому любая точка удовлетворяет условию sinx>a. Значит, x — любое число.

И здесь x — любое число, поскольку точки -п/2+2пn входят в решение, в отличие от строгого неравенства sinx>-1. Ничего исключать не надо.

Единственной точкой на окружности, удовлетворяющей данному условию, является п/2. С учетом периода синуса, решением данного неравенства является множество точек x=п/2+2пn.

Например, решить неравенство sinx>-1/2:



Понравилась статья? Поделитесь ей
Наверх